最近在看一篇Github上大佬的文章,从0开始训练llama3,觉得对于《从0开发大模型》有点帮助,于是翻译一下,发现其中很多内容当前系列文章的知识点相似。原文:https://github.com/naklecha/llama3-from-scratch其中meta-llama/Meta-Llama-3-8B文件地址:https://huggingface.co/meta-llama/Meta-Llama-3-8B/tree/main/original
1、Tokenizer
原始代码没有实现tokenizer,而是使用llama3的 tokenizer.model,实现代码如下:
# 执行:pip install blobfile
# 执行:pip install tiktoken
from pathlib import Path
import tiktoken
from tiktoken.load import load_tiktoken_bpe
tokenizer_path = "Meta-Llama-3-8B/tokenizer.model"
special_tokens = [
"<|begin_of_text|>",
"<|end_of_text|>",
"<|reserved_special_token_0|>",
"<|reserved_special_token_1|>",
"<|reserved_special_token_2|>",
"<|reserved_special_token_3|>",
"<|start_header_id|>",
"<|end_header_id|>",
"<|reserved_special_token_4|>",
"<|eot_id|>", # end of turn
] + [f"<|reserved_special_token_{i}|>"for i in range(5, 256 - 5)]
mergeable_ranks = load_tiktoken_bpe(tokenizer_path)
tokenizer = tiktoken.Encoding(
name=Path(tokenizer_path).name,
pat_str=r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+",
mergeable_ranks=mergeable_ranks,
special_tokens={token: len(mergeable_ranks) + i for i, token in enumerate(special_tokens)},
)
print(tokenizer.decode(tokenizer.encode("hello world!")))
## 输出
hello world!
这里用了字节对编码(BPE),和我们训练的tokenzier使用的方式一样。
2、读取模型文件
将模型文件下载到 Meta-Llama-3-8B 文件夹中,然后读取模型文件,代码如下:
import torch
import json
model = torch.load("Meta-Llama-3-8B/consolidated.00.pth")
print(json.dumps(list(model.keys())[:20], indent=4))
with open("Meta-Llama-3-8B/params.json", "r") as f:
config = json.load(f)
print(config)
## 输出
[
"tok_embeddings.weight",
"layers.0.attention.wq.weight",
"layers.0.attention.wk.weight",
"layers.0.attention.wv.weight",
"layers.0.attention.wo.weight",
"layers.0.feed_forward.w1.weight",
"layers.0.feed_forward.w3.weight",
"layers.0.feed_forward.w2.weight",
"layers.0.attention_norm.weight",
"layers.0.ffn_norm.weight",
"layers.1.attention.wq.weight",
"layers.1.attention.wk.weight",
"layers.1.attention.wv.weight",
"layers.1.attention.wo.weight",
"layers.1.feed_forward.w1.weight",
"layers.1.feed_forward.w3.weight",
"layers.1.feed_forward.w2.weight",
"layers.1.attention_norm.weight",
"layers.1.ffn_norm.weight",
"layers.2.attention.wq.weight"
]
{
'dim': 4096,
'n_layers': 32,
'n_heads': 32,
'n_kv_heads': 8,
'vocab_size': 128256,
'multiple_of': 1024,
'ffn_dim_multiplier': 1.3,
'norm_eps': 1e-05,
'rope_theta': 500000.0
}
其中输出的配置看:
- n_layers=32:表示该模型有32个Transformer层
- n_heads=32:表示每个Transformer层有32个注意力头
- vobac_size=128256:表示词汇表大小为128256
3、文本转换为token
使用 tiktoken(openai的库)作为 tokenizer,实现如下:
llama3-scratch
prompt = "the answer to the ultimate question of life, the universe, and everything is "
tokens = [128000] + tokenizer.encode(prompt)
print(tokens)
tokens = torch.tensor(tokens)
prompt_split_as_tokens = [tokenizer.decode([token.item()]) for token in tokens]
print(prompt_split_as_tokens)
## 输出
[128000, 1820, 4320, 311, 279, 17139, 3488, 315, 2324, 11, 279, 15861, 11, 323, 4395, 374, 220]
['<|begin_of_text|>', 'the', ' answer', ' to', ' the', ' ultimate', ' question', ' of', ' life', ',', ' the', ' universe', ',', ' and', ' everything', ' is', ' ']
其中,128000是 <|begin_of_text|> 的token,还包括如下特殊token:
"<|begin_of_text|>",
"<|end_of_text|>",
"<|reserved_special_token_0|>",
"<|reserved_special_token_1|>",
"<|reserved_special_token_2|>",
"<|reserved_special_token_3|>",
"<|start_header_id|>",
"<|end_header_id|>",
"<|reserved_special_token_4|>",
"<|eot_id|>"
4、将token转换为embedding
将上面的 token 通过 embedding 层,[17X1] 转换为 [17X4096],即 17 个 embeding(每个token一个),长度为 4096。
llama3-scratch
代码如下:
embedding_layer = torch.nn.Embedding(vocab_size, dim)
embedding_layer.weight.data.copy_(model["tok_embeddings.weight"])
token_embeddings_unnormalized = embedding_layer(tokens).to(torch.bfloat16)
token_embeddings_unnormalized.shape
## 输出
torch.Size([17, 4096])
5、使用RMS对embedding进行归一化
当前步骤不会改变形状,只是做标准化处理,需要用到norm_eps,代码如下:
def rms_norm(tensor, norm_weights):
return (tensor * torch.rsqrt(tensor.pow(2).mean(-1, keepdim=True) + norm_eps)) * norm_weights
llama3-scratch
6、构建Transformer第一层
6.1、归一化
获取模型的第一层权重(layer.0),进行归一化处理:
llama3-scratch
token_embeddings = rms_norm(token_embeddings_unnormalized, model["layers.0.attention_norm.weight"])
token_embeddings.shape
## 输出
torch.Size([17, 4096])
6.2、注意力机制
先加载Transformer的第一层注意力头:
llama3-scratch
- 从模型中加载wq,wk,wv,wo的权重,分别是[4096X4096],[1024X4096],[1024X4096],[4096X4096]
- 乍一看这很奇怪,因为理想情况下我们希望每个头部的每个 q、k、v 和 o 单独存在
- 代码的作者将它们捆绑在一起,因为它有助于并行化注意力头部乘法
print(
model["layers.0.attention.wq.weight"].shape,
model["layers.0.attention.wk.weight"].shape,
model["layers.0.attention.wv.weight"].shape,
model["layers.0.attention.wo.weight"].shape
)
## 输出
torch.Size([4096, 4096]) torch.Size([1024, 4096]) torch.Size([1024, 4096]) torch.Size([4096, 4096])
6.3、展开query
将多个注意力头展开query,可以得到的形状为 [32X128X4096],其中32是llama3的头数,128是查询向量的大小,4096是token emebdding的大小,代码如下:
q_layer0 = model["layers.0.attention.wq.weight"]
head_dim = q_layer0.shape[0] // n_heads
q_layer0 = q_layer0.view(n_heads, head_dim, dim)
q_layer0.shape
## 输出
torch.Size([32, 128, 4096])
6.4、实现第一层的第一个head
访问第一层的query权重矩阵第一个head,权重矩阵的大小是[128x4096],打印一下:
q_layer0_head0 = q_layer0[0]
q_layer0_head0.shape
## 输出
torch.Size([128, 4096])
6.5、query权重和token embedding相乘
token embeding的形状是[17x128],这是因为我们有17个标记,每个标记都有一个128长度的查询,将查询的权重和token embeding层相乘,代码如下:
q_per_token = torch.matmul(token_embeddings, q_layer0_head0.T)
q_per_token.shape
## 输出
torch.Size([17, 128])
llama3-scratch
6.6、位置编码
当前阶段我们的token都有一个query向量,但是仔细想想——单独的query向量根本不知道提示词的位置,比如:
query: "the answer to the ultimate question of life, the universe, and everything is "
在 prompt 中,使⽤了三次 "the" ,需要根据它们在prompt中的位置为每个 "the" token ⽣成不同的query向量(每个⻓度为 128),可以使⽤ RoPE (旋转位置编码)来实现这⼀点,具体RoPE实现可以参考之前的文章,也可以看看这个视频:https://www.youtube.com/watch?v=o29P0Kpobz0&t=530s。
llama3-scratch
q_per_token_split_into_pairs = q_per_token.float().view(q_per_token.shape[0], -1, 2)
q_per_token_split_into_pairs.shape
## 输出
torch.Size([17, 64, 2])
从上面的步骤中,将query向量分成几对,每对使用旋转角度移位,现在将一个大小为[17X64X2]的向量,这个是prompt中每个标记分成64对的128个长度的query向量, 64对中的每一对都将旋转 m*theta,其中 m 是我们要旋转查询的 token 位置。
llama3-scratch
6.7、复数的点积来计算旋转向量
llama3-scratch
zero_to_one_split_into_64_parts = torch.tensor(range(64))/64
zero_to_one_split_into_64_parts
## 输出
tensor([0.0000, 0.0156, 0.0312, 0.0469, 0.0625, 0.0781, 0.0938, 0.1094, 0.1250,
0.1406, 0.1562, 0.1719, 0.1875, 0.2031, 0.2188, 0.2344, 0.2500, 0.2656,
0.2812, 0.2969, 0.3125, 0.3281, 0.3438, 0.3594, 0.3750, 0.3906, 0.4062,
0.4219, 0.4375, 0.4531, 0.4688, 0.4844, 0.5000, 0.5156, 0.5312, 0.5469,
0.5625, 0.5781, 0.5938, 0.6094, 0.6250, 0.6406, 0.6562, 0.6719, 0.6875,
0.7031, 0.7188, 0.7344, 0.7500, 0.7656, 0.7812, 0.7969, 0.8125, 0.8281,
0.8438, 0.8594, 0.8750, 0.8906, 0.9062, 0.9219, 0.9375, 0.9531, 0.9688,
0.9844])
freqs = 1.0 / (rope_theta ** zero_to_one_split_into_64_parts)
freqs
## 输出
tensor([1.0000e+00, 8.1462e-01, 6.6360e-01, 5.4058e-01, 4.4037e-01, 3.5873e-01,
2.9223e-01, 2.3805e-01, 1.9392e-01, 1.5797e-01, 1.2869e-01, 1.0483e-01,
8.5397e-02, 6.9566e-02, 5.6670e-02, 4.6164e-02, 3.7606e-02, 3.0635e-02,
2.4955e-02, 2.0329e-02, 1.6560e-02, 1.3490e-02, 1.0990e-02, 8.9523e-03,
7.2927e-03, 5.9407e-03, 4.8394e-03, 3.9423e-03, 3.2114e-03, 2.6161e-03,
2.1311e-03, 1.7360e-03, 1.4142e-03, 1.1520e-03, 9.3847e-04, 7.6450e-04,
6.2277e-04, 5.0732e-04, 4.1327e-04, 3.3666e-04, 2.7425e-04, 2.2341e-04,
1.8199e-04, 1.4825e-04, 1.2077e-04, 9.8381e-05, 8.0143e-05, 6.5286e-05,
5.3183e-05, 4.3324e-05, 3.5292e-05, 2.8750e-05, 2.3420e-05, 1.9078e-05,
1.5542e-05, 1.2660e-05, 1.0313e-05, 8.4015e-06, 6.8440e-06, 5.5752e-06,
4.5417e-06, 3.6997e-06, 3.0139e-06, 2.4551e-06])
freqs_for_each_token = torch.outer(torch.arange(17), freqs)
freqs_cis = torch.polar(torch.ones_like(freqs_for_each_token), freqs_for_each_token)
freqs_cis.shape
## 输出
torch.Size([17, 64])
6.8、现在在每个token的query元素都有⼀个复数(⻆度变化向量)
我们可以将 query(分成两对的查询)转换为复数,然后使用点积根据位置旋转查询,代码如下:
q_per_token_as_complex_numbers = torch.view_as_complex(q_per_token_split_into_pairs)
q_per_token_as_complex_numbers.shape
## 输出
torch.Size([17, 64])
q_per_token_as_complex_numbers_rotated = q_per_token_as_complex_numbers * freqs_cis
q_per_token_as_complex_numbers_rotated.shape
# 输出
torch.Size([17, 64])
6.9、获得旋转后的向量
可以通过再次将复数看作实数来返回成对的 query,代码如下:
q_per_token_split_into_pairs_rotated = torch.view_as_real(q_per_token_as_complex_numbers_rotated)
q_per_token_split_into_pairs_rotated.shape
# 输出
torch.Size([17, 64, 2])
旋转对现在已合并,现在有了⼀个新的query向量(旋转query向量),其shape为[17x128],其中17是token的数量,128是query向量的维度。
q_per_token_rotated = q_per_token_split_into_pairs_rotated.view(q_per_token.shape)
q_per_token_rotated.shape
# 输出
torch.Size([17, 128])
6.10、keys(操作query一样)
llama3-scratch
我太懒了,所以我不打算对key进行数学运算,唯一需要记住的是:
- key生成的key向量是128维
- key的权重数量只有查询的1/4,因为key的权重一次在4个头部之间共享,以减少所需的计算次数
- key也会选择添加位置信息,和查询一样
k_layer0 = model["layers.0.attention.wk.weight"]
k_layer0 = k_layer0.view(n_kv_heads, k_layer0.shape[0] // n_kv_heads, dim)
k_layer0.shape
## 输出
torch.Size([8, 128, 4096])
k_layer0_head0 = k_layer0[0]
k_layer0_head0.shape
## 输出
torch.Size([128, 4096])
k_per_token = torch.matmul(token_embeddings, k_layer0_head0.T)
k_per_token.shape
## 输出
torch.Size([17, 128])
k_per_token_split_into_pairs = k_per_token.float().view(k_per_token.shape[0], -1, 2)
k_per_token_split_into_pairs.shape
## 输出
torch.Size([17, 64, 2])
k_per_token_as_complex_numbers = torch.view_as_complex(k_per_token_split_into_pairs)
k_per_token_as_complex_numbers.shape
## 输出
torch.Size([17, 64])
k_per_token_split_into_pairs_rotated = torch.view_as_real(k_per_token_as_complex_numbers * freqs_cis)
k_per_token_split_into_pairs_rotated.shape
## 输出
torch.Size([17, 64, 2])
k_per_token_rotated = k_per_token_split_into_pairs_rotated.view(k_per_token.shape)
k_per_token_rotated.shape
## 输出
torch.Size([17, 128])
完成当前步骤,每个token的query和key都是[17X128]维度。
6.11、将query和key相乘
这样做会给我们一个分数,将每个token相互映射,这个分数描述了每个token的查询与每个token的键的关联程度,这是自我注意力。注意力得分矩阵 (qk_per_token) 的形状是 [17x17],其中17是提示中的token数量。
llama3-scratch
qk_per_token = torch.matmul(q_per_token_rotated, k_per_token_rotated.T)/(head_dim)**0.5
qk_per_token.shape
## 输出
torch.Size([17, 17])
7、屏蔽QK分数
7.1、屏蔽预测的token
在llama3的训练过程中,未来的token qk分数被屏蔽,为什么?因为在训练过程中,只学习使⽤过去的token来预测token,因此,在推理过程中,将未来的token设置为零。
llama3-scratch
执行如下代码输出:
def display_qk_heatmap(qk_per_token):
_, ax = plt.subplots()
im = ax.imshow(qk_per_token.to(float).detach(), cmap='viridis')
ax.set_xticks(range(len(prompt_split_as_tokens)))
ax.set_yticks(range(len(prompt_split_as_tokens)))
ax.set_xticklabels(prompt_split_as_tokens)
ax.set_yticklabels(prompt_split_as_tokens)
ax.figure.colorbar(im, ax=ax)
display_qk_heatmap(qk_per_token)
llama3-scratch
mask = torch.full((len(tokens), len(tokens)), float("-inf"), device=tokens.device)
mask = torch.triu(mask, diagnotallow=1)
mask
## 输出
tensor([[0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
qk_per_token_after_masking = qk_per_token + mask
display_qk_heatmap(qk_per_token_after_masking)
qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax(qk_per_token_after_masking, dim=1).to(torch.bfloat16)
display_qk_heatmap(qk_per_token_after_masking_after_softmax)
7.2、values(注意力机制最后部分)
图片
llama3-scratch
注意力分数用于确定每个token的使用多少矩阵,就像key一样,value的权重也是每4个注意力头之间共享,因此value矩阵形状是[8x128x4096]。
v_layer0 = model["layers.0.attention.wv.weight"]
v_layer0 = v_layer0.view(n_kv_heads, v_layer0.shape[0] // n_kv_heads, dim)
v_layer0.shape
## 输出
torch.Size([8, 128, 4096])
第一层,第一个头值权重矩阵如下:
v_layer0_head0 = v_layer0[0]
v_layer0_head0.shape
## 输出
torch.Size([128, 4096])
7.3、value向量
llama3-scratch
我们现在使用value权重来获取每个token的注意力值,其大小为[17x128],其中17是提示中的token数量,128是每个token的值向量的大小。
v_per_token = torch.matmul(token_embeddings, v_layer0_head0.T)
v_per_token.shape
## 输出
torch.Size([17, 128])
7.4、最终的注意力输出
llama3-scratch
与每个token的值相乘后得到的注意向量形状为[17*128],输出如下:
qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)
qkv_attention.shape
## 输出
torch.Size([17, 128])
8、多头注意力机制
llama3-scratch
现在获取了第一层和第一个头的注意力输出,只需要按照n_heads重复这个步骤,对第一层的每个头部执行与上面的单元格完全相同的数学运算。
qkv_attention_store = []
for head in range(n_heads):
q_layer0_head = q_layer0[head]
k_layer0_head = k_layer0[head//4] # key weights are shared across 4 heads
v_layer0_head = v_layer0[head//4] # value weights are shared across 4 heads
q_per_token = torch.matmul(token_embeddings, q_layer0_head.T)
k_per_token = torch.matmul(token_embeddings, k_layer0_head.T)
v_per_token = torch.matmul(token_embeddings, v_layer0_head.T)
q_per_token_split_into_pairs = q_per_token.float().view(q_per_token.shape[0], -1, 2)
q_per_token_as_complex_numbers = torch.view_as_complex(q_per_token_split_into_pairs)
q_per_token_split_into_pairs_rotated = torch.view_as_real(q_per_token_as_complex_numbers * freqs_cis[:len(tokens)])
q_per_token_rotated = q_per_token_split_into_pairs_rotated.view(q_per_token.shape)
k_per_token_split_into_pairs = k_per_token.float().view(k_per_token.shape[0], -1, 2)
k_per_token_as_complex_numbers = torch.view_as_complex(k_per_token_split_into_pairs)
k_per_token_split_into_pairs_rotated = torch.view_as_real(k_per_token_as_complex_numbers * freqs_cis[:len(tokens)])
k_per_token_rotated = k_per_token_split_into_pairs_rotated.view(k_per_token.shape)
qk_per_token = torch.matmul(q_per_token_rotated, k_per_token_rotated.T)/(128)**0.5
mask = torch.full((len(tokens), len(tokens)), float("-inf"), device=tokens.device)
mask = torch.triu(mask, diagnotallow=1)
qk_per_token_after_masking = qk_per_token + mask
qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax(qk_per_token_after_masking, dim=1).to(torch.bfloat16)
qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)
qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)
qkv_attention_store.append(qkv_attention)
len(qkv_attention_store)
## 输出
32
llama3-scratch
现在又有了第一层的32个head的qkv_attention矩阵,接下来将所有的注意力分数合并为一个大小为[17x4096]的大矩阵,如下所示:
stacked_qkv_attention = torch.cat(qkv_attention_store, dim=-1)
stacked_qkv_attention.shape
## 输出
torch.Size([17, 4096])
9、最后一步:计算权重矩阵
对于第0层注意力,最后要做的事情之一是将权重矩阵相乘:
w_layer0 = model["layers.0.attention.wo.weight"]
w_layer0.shape
## 输出
torch.Size([4096, 4096])
9.1、简单的线性层,所以我们只需要matmul
llama3-scratch
embedding_delta = torch.matmul(stacked_qkv_attention, w_layer0.T)
embedding_delta.shape
## 输出
torch.Size([17, 4096])
现在embeding值变化了,添加到原始的token中嵌入:
embedding_after_edit = token_embeddings_unnormalized + embedding_delta
embedding_after_edit.shape
## 输出
torch.Size([17, 4096])
9.2、归一化,然后通过embedding增量运⾏⼀个前馈神经⽹络
llama3-scratch
embedding_after_edit_normalized = rms_norm(embedding_after_edit, model["layers.0.ffn_norm.weight"])
embedding_after_edit_normalized.shape
## 输出
torch.Size([17, 4096])
9.3、加载FFN权重并实现前馈⽹络
llama3-scratch
在llama3中,使用了SwiGLU前馈网络,这种网络架构非常适合在模型需要时添加非线性,如今,在llms中使用这种前馈网络架构相当常见。
w1 = model["layers.0.feed_forward.w1.weight"]
w2 = model["layers.0.feed_forward.w2.weight"]
w3 = model["layers.0.feed_forward.w3.weight"]
output_after_feedforward = torch.matmul(torch.functional.F.silu(torch.matmul(embedding_after_edit_normalized, w1.T)) * torch.matmul(embedding_after_edit_normalized, w3.T), w2.T)
output_after_feedforward.shape
## 输出
torch.Size([17, 4096])
10、在第⼀层之后,终于为每个token生成新的embeding
在我们完成之前只需要再经过31层(一个 for 循环),可以想象这个生成过的embeding具有关于第一层上提出的所有查询的信息。现在,对所有提出的问题每⼀层都会对query进⾏越来越复杂的编码,直到得到⼀个embedding,其中包含了需要的下⼀个token的所有信息。
layer_0_embedding = embedding_after_edit+output_after_feedforward
layer_0_embedding.shape
## 输出
torch.Size([17, 4096])
for循环对每一层都执行相同的逻辑,最终获得final_embedding,如下所示:
final_embedding = token_embeddings_unnormalized
for layer in range(n_layers):
qkv_attention_store = []
layer_embedding_norm = rms_norm(final_embedding, model[f"layers.{layer}.attention_norm.weight"])
q_layer = model[f"layers.{layer}.attention.wq.weight"]
q_layer = q_layer.view(n_heads, q_layer.shape[0] // n_heads, dim)
k_layer = model[f"layers.{layer}.attention.wk.weight"]
k_layer = k_layer.view(n_kv_heads, k_layer.shape[0] // n_kv_heads, dim)
v_layer = model[f"layers.{layer}.attention.wv.weight"]
v_layer = v_layer.view(n_kv_heads, v_layer.shape[0] // n_kv_heads, dim)
w_layer = model[f"layers.{layer}.attention.wo.weight"]
for head in range(n_heads):
q_layer_head = q_layer[head]
k_layer_head = k_layer[head//4]
v_layer_head = v_layer[head//4]
q_per_token = torch.matmul(layer_embedding_norm, q_layer_head.T)
k_per_token = torch.matmul(layer_embedding_norm, k_layer_head.T)
v_per_token = torch.matmul(layer_embedding_norm, v_layer_head.T)
q_per_token_split_into_pairs = q_per_token.float().view(q_per_token.shape[0], -1, 2)
q_per_token_as_complex_numbers = torch.view_as_complex(q_per_token_split_into_pairs)
q_per_token_split_into_pairs_rotated = torch.view_as_real(q_per_token_as_complex_numbers * freqs_cis)
q_per_token_rotated = q_per_token_split_into_pairs_rotated.view(q_per_token.shape)
k_per_token_split_into_pairs = k_per_token.float().view(k_per_token.shape[0], -1, 2)
k_per_token_as_complex_numbers = torch.view_as_complex(k_per_token_split_into_pairs)
k_per_token_split_into_pairs_rotated = torch.view_as_real(k_per_token_as_complex_numbers * freqs_cis)
k_per_token_rotated = k_per_token_split_into_pairs_rotated.view(k_per_token.shape)
qk_per_token = torch.matmul(q_per_token_rotated, k_per_token_rotated.T)/(128)**0.5
mask = torch.full((len(token_embeddings_unnormalized), len(token_embeddings_unnormalized)), float("-inf"))
mask = torch.triu(mask, diagnotallow=1)
qk_per_token_after_masking = qk_per_token + mask
qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax(qk_per_token_after_masking, dim=1).to(torch.bfloat16)
qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)
qkv_attention_store.append(qkv_attention)
stacked_qkv_attention = torch.cat(qkv_attention_store, dim=-1)
w_layer = model[f"layers.{layer}.attention.wo.weight"]
embedding_delta = torch.matmul(stacked_qkv_attention, w_layer.T)
embedding_after_edit = final_embedding + embedding_delta
embedding_after_edit_normalized = rms_norm(embedding_after_edit, model[f"layers.{layer}.ffn_norm.weight"])
w1 = model[f"layers.{layer}.feed_forward.w1.weight"]
w2 = model[f"layers.{layer}.feed_forward.w2.weight"]
w3 = model[f"layers.{layer}.feed_forward.w3.weight"]
output_after_feedforward = torch.matmul(torch.functional.F.silu(torch.matmul(embedding_after_edit_normalized, w1.T)) * torch.matmul(embedding_after_edit_normalized, w3.T), w2.T)
final_embedding = embedding_after_edit+output_after_feedforward
11、有了final_embedding,这是模型对下一个标记做出的最佳猜测
embeding的形状和token embeding的形状相同,都是[17X4096],其中17是token的数量,4096是嵌入的维度。
final_embedding = rms_norm(final_embedding, model["norm.weight"])
final_embedding.shape
## 输出
torch.Size([17, 4096])
12、最后,让我们将embeding解码为token
llama3-scratch
我们将使用输出解码器将最终的嵌入转换为token,如下所示:
model["output.weight"].shape
## 输出
torch.Size([128256, 4096])
最终我们希望这个问题the answer to the ultimate question of life, the universe, and everything is ,答案是42,现在执行如下代码:
logits = torch.matmul(final_embedding[-1], model["output.weight"].T)
logits.shape
## 输出
torch.Size([128256])
预测下一个token的代码:
next_token = torch.argmax(logits, dim=-1)
next_token
## 输出
tensor(2983)
llama3-scratch
最终输出结果:
tokenizer.decode([next_token.item()])
## 输出
42
最终我整理了一下代码:https://github.com/linkxzhou/mylib/blob/master/llm/0-llama3-from-scratch.py
参考
(1)https://github.com/naklecha/llama3-from-scratch