单张图像探索3D奇境:Wonderland让高质量3D场景生成更高效

人工智能 新闻
在人类的认知中,从单张图像中感知并想象三维世界是一项天然的能力。我们能直观地估算距离、形状,猜想被遮挡区域的几何信息。

本文的主要作者来自多伦多大学、Snap Inc.和UCLA的研究团队。第一作者为多伦多大学博士生梁汉文和Snap Inc.的曹军力,他们专注于视频生成以及3D/4D场景生成与重建的研究,致力于创造更加真实、高质量的3D和4D场景。团队成员期待与更多志同道合的研究者们交流与合作。

在人类的认知中,从单张图像中感知并想象三维世界是一项天然的能力。我们能直观地估算距离、形状,猜想被遮挡区域的几何信息。然而,将这一复杂的认知过程赋予机器却充满挑战。最近,来自多伦多大学、Snap Inc. 和 UCLA 的研究团队推出了全新的模型 ——Wonderland,它能够从单张图像生成高质量、广范围的 3D 场景,在单视图 3D 场景生成领域取得了突破性进展。

图片

  • 论文地址: https://arxiv.org/abs/2412.12091
  • 项目主页:https://snap-research.github.io/wonderland/

图片

技术突破:从单张图像到三维世界的关键创新

传统的 3D 重建技术往往依赖于多视角数据或逐个场景 (per-scene) 的优化,且在处理背景和不可见区域时容易失真。为解决这些问题,Wonderland 创新性地结合视频生成模型和大规模 3D 重建模型,实现了高效高质量的大规模 3D 场景生成:

  1. 向视频扩散模型中嵌入 3D 意识:通过向视频扩散模型中引入相机位姿控制,Wonderland 在视频 latent 空间中嵌入了场景的多视角信息,并能保证 3D 一致性。视频生成模型在相机运动轨迹的精准控制下,将单张图像扩展为包含丰富空间关系的多视角视频。
  2. 双分支相机控制机制:利用 ControlNet 和 LoRA 模块,Wonderland 实现了在视频生成过程中对于丰富的相机视角变化的精确控制,显著提升了多视角生成的视频质量、几何一致性和静态特征。
  3. 大规模 latent-based 3D 重建模型(LaLRM):Wonderland 创新地引入了 3D 重建模型 LaLRM,利用视频生成模型生成的 latent 直接重构 3D 场景(feed-forward reconstruction)。重建模型的训练采用了高效的逐步训练策略,将视频 latent 空间中的信息转化为 3D 高斯点分布(3D Gaussian Splatting, 3DGS),显著降低了内存需求和重建时间成本。凭借这种设计,LaLRM 能够有效地将生成和重建任务对齐,同时在图像空间与三维空间之间建立了桥梁,实现了更加高效且一致的广阔 3D 场景构建。

效果展示 — 视频生成

基于单张图和 camera condition,实现视频生成的精准视角控制:

Camera-guided 视频生成模型可以精确地遵循轨迹的条件,生成 3D-geometry 一致的高质量视频,并具有很强的泛化性,可以遵循各种复杂的轨迹,并适用于各种风格的输入图片。

更多的例子:

不同的输入图片,同样的三条相机轨迹,生成的视频:

图片

图片

图片

给定输入图片和多条相机轨迹,生成视频可以深度地探索场景:

图片

图片

图片

图片

效果展示 —3D 场景生成

基于单张图,利用 LaLRM, Wonderland 可以生成高质量的、广阔的 3D 场景:

(以下展示均为从建立的3DGS Rendering出的结果)

图片

图片

图片

图片

基于单张图和多条相机轨迹,Wonderland 可以深度探索和生成高质量的、广阔的 3D 场景:

卓越性能:在视觉质量和生成效率等多个维度上表现卓越

Wonderland 的主要特点在于其精确的视角控制、卓越的场景生成质量、生成的高效性和广泛的适用性。实验结果显示,该模型在多个数据集上的表现超越现有方法,包括视频生成的视角控制、视频生成的视觉质量、3D 重建的几何一致性和渲染的图像质量、以及端到端的生成速度均取得了优异的表现:

  1. 双分支相机条件策略:通过引入双分支相机条件控制策略,视频扩散模型能够生成 3D-geometry 一致的多视图场景捕捉,且相较于现有方法达到了更精确的姿态控制。
  2. Zero-shot 3D 场景生成:在单图像输入的前提下,Wonderland 可进行高效的 3D 场景前向重建,在多个基准数据集(例如 RealEstate10K、DL3DV 和 Tanks-and-Temples)上的 3D 场景重建质量均优于现有方法。
  3. 广覆盖场景生成能力:与过去的 3D 前向重建通常受限于小视角范围或者物体级别的重建不同,Wonderland 能够高效生成广范围的复杂场景。其生成的 3D 场景不仅具备高度的几何一致性,还具有很强的泛化性,能处理 out-of-domain 的场景。
  4. 超高效率:在单张图像输入的问题设定下,利用单张 A100,Wonderland 仅需约 5 分钟即可生成完整的 3D 场景。这一速度相比需要 16 分钟的 Cat3D 提升了 3.2 倍,相较需要 3 小时的 ZeroNVS 更是提升了 36 倍。

应用场景:视频和 3D 场景内容创作的新工具

Wonderland 的出现为视频和 3D 场景的创作提供了一种崭新的解决方案。在建筑设计、虚拟现实、影视特效以及游戏开发等领域,该技术展现了广阔的应用潜力。通过其精准的视频位姿控制和具备广视角、高清晰度的 3D 场景生成能力,Wonderland 能够满足复杂场景中对高质量内容的需求,为创作者带来更多可能性。

未来展望

尽管模型表现优异,Wonderland 研发团队深知仍有许多值得提升和探索的方向。例如,进一步优化对动态场景的适配能力、提升对真实场景细节的还原度等,都是未来努力的重点。希望通过不断改进和完善,让这一研发思路不仅推动单视图 3D 场景生成技术的进步,也能为视频生成与 3D 技术在实际应用中的广泛普及贡献力量。

责任编辑:张燕妮 来源: 机器之心
相关推荐

2023-12-10 15:17:59

开源模型3D

2023-12-07 10:37:55

3D框架AI

2023-05-29 10:39:00

AI算法

2024-12-31 07:15:00

2024-10-08 09:25:00

3D模型生成

2023-08-21 10:57:17

3D模型

2023-07-14 09:41:01

3DAI

2023-05-09 09:35:22

2024-03-06 14:57:13

火山引擎

2024-06-11 07:02:00

大模型3D内容生成技术

2024-07-31 15:30:05

2024-12-10 15:17:11

2024-07-16 12:02:11

2024-01-11 09:55:00

AI训练

2011-10-06 13:30:45

宏碁投影仪

2009-12-15 16:13:11

3D图像

2012-11-26 12:51:44

木材3D打

2024-02-20 13:44:00

AI数据

2025-01-10 14:00:00

3D模型生成

2024-12-20 14:10:00

AI模型训练
点赞
收藏

51CTO技术栈公众号