import tensorflow as tf
from tensorflow.keras import layers, models
def unet_model(input_size=(128, 128, 3)):
inputs = layers.Input(input_size)
c1 = layers.Conv2D(64, (3, 3), activatinotallow='relu', padding='same')(inputs)
c1 = layers.Conv2D(64, (3, 3), activatinotallow='relu', padding='same')(c1)
p1 = layers.MaxPooling2D((2, 2))(c1)
c2 = layers.Conv2D(128, (3, 3), activatinotallow='relu', padding='same')(p1)
c2 = layers.Conv2D(128, (3, 3), activatinotallow='relu', padding='same')(c2)
p2 = layers.MaxPooling2D((2, 2))(c2)
c3 = layers.Conv2D(256, (3, 3), activatinotallow='relu', padding='same')(p2)
c3 = layers.Conv2D(256, (3, 3), activatinotallow='relu', padding='same')(c3)
p3 = layers.MaxPooling2D((2, 2))(c3)
c4 = layers.Conv2D(512, (3, 3), activatinotallow='relu', padding='same')(p3)
c4 = layers.Conv2D(512, (3, 3), activatinotallow='relu', padding='same')(c4)
p4 = layers.MaxPooling2D(pool_size=(2, 2))(c4)
c5 = layers.Conv2D(1024, (3, 3), activatinotallow='relu', padding='same')(p4)
c5 = layers.Conv2D(1024, (3, 3), activatinotallow='relu', padding='same')(c5)
u6 = layers.Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(c5)
u6 = layers.concatenate([u6, c4])
c6 = layers.Conv2D(512, (3, 3), activatinotallow='relu', padding='same')(u6)
c6 = layers.Conv2D(512, (3, 3), activatinotallow='relu', padding='same')(c6)
u7 = layers.Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(c6)
u7 = layers.concatenate([u7, c3])
c7 = layers.Conv2D(256, (3, 3), activatinotallow='relu', padding='same')(u7)
c7 = layers.Conv2D(256, (3, 3), activatinotallow='relu', padding='same')(c7)
u8 = layers.Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c7)
u8 = layers.concatenate([u8, c2])
c8 = layers.Conv2D(128, (3, 3), activatinotallow='relu', padding='same')(u8)
c8 = layers.Conv2D(128, (3, 3), activatinotallow='relu', padding='same')(c8)
u9 = layers.Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c8)
u9 = layers.concatenate([u9, c1], axis=3)
c9 = layers.Conv2D(64, (3, 3), activatinotallow='relu', padding='same')(u9)
c9 = layers.Conv2D(64, (3, 3), activatinotallow='relu', padding='same')(c9)
outputs = layers.Conv2D(1, (1, 1), activatinotallow='sigmoid')(c9)
model = models.Model(inputs=[inputs], outputs=[outputs])
return model
model = unet_model()
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.summary()
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.