执行计划(execution plan,也叫查询计划或者解释计划)是数据库执行 SQL 语句的具体步骤,例如通过索引还是全表扫描访问表中的数据,连接查询的实现方式和连接的顺序等。如果 SQL 语句性能不够理想,我们首先应该查看它的执行计划。
本文主要介绍如何在各种数据库中获取和理解执行计划,并给出进一步深入分析的参考文档。
我们先给出在各种数据库中查看执行计划的一个简单汇总:
MySQL 执行计划
MySQL 中获取执行计划的方法很简单,就是在 SQL 语句的前面加上 EXPLAIN 关键字:
EXPLAIN
SELECT e.first_name,e.last_name,e.salary,d.department_name
FROM employees e
JOIN departments d ON (e.department_id = d.department_id)
WHERE e.salary > 15000;
执行该语句将会返回一个表格形式的执行计划,包含了 12 列信息:
id|select_type|table|partitions|type |possible_keys |key |key_len|ref |rows|filtered|Extra |
--|-----------|-----|----------|------|-----------------|-------|-------|--------------------|----|--------|-----------|
1|SIMPLE |e | |ALL |emp_department_ix| | | | 107| 33.33|Using where|
1|SIMPLE |d | |eq_ref|PRIMARY |PRIMARY|4 |hrdb.e.department_id| 1| 100| |
MySQL 中的 EXPLAIN 支持 SELECT、DELETE、INSERT、REPLACE 以及 UPDATE 语句。
接下来,我们要做的就是理解执行计划中这些字段的含义。下表列出了 MySQL 执行计划中的各个字段的作用:
列名 | 作用 |
id | 语句中 SELECT 的序号。如果是 UNION 操作的结果,显示为 NULL;此时 table 列显示为 <unionM,N>。 |
select_type | SELECT 的类型,包括: - SIMPLE,不涉及 UNION 或者子查询的简单查询; - PRIMARY,最外层 SELECT; - UNION,UNION 中第二个或之后的 SELECT; - DEPENDENT UNION,UNION 中第二个或之后的 SELECT,该 SELECT 依赖于外部查询; - UNION RESULT,UNION 操作的结果; - SUBQUERY,子查询中的第一个 SELECT; - DEPENDENT SUBQUERY,子查询中的第一个 SELECT,该 SELECT 依赖于外部查询; - DERIVED,派生表,即 FROM 中的子查询; - DEPENDENT DERIVED,依赖于其他表的派生表; - MATERIALIZED,物化子查询; - UNCACHEABLE SUBQUERY,无法缓存结果的子查询,对于外部表中的每一行都需要重新查询; - UNION 中第二个或之后的 SELECT,该 UNION属于 UNCACHEABLE SUBQUERY。 |
table | 数据行的来源表,也有可能是以下值之一: - <unionM,N>,id 为 M 和 N 的 SELECT 并集运算的结果; - <derivedN>,id 为 N 的派生表的结果; - <subqueryN>,id 为 N 的物化子查询的结果。 |
partitions | 对于分区表而言,表示数据行所在的分区;普通表显示为 NULL。 |
type | 连接类型或者访问类型,性能从好到差依次为: - system,表中只有一行数据,这是 const 类型的特殊情况; - const,最多返回一条匹配的数据,在查询的最开始读取; - eq_ref,对于前面的每一行,从该表中读取一行数据; - ref,对于前面的每一行,从该表中读取匹配索引值的所有数据行; - fulltext,通过 FULLTEXT 索引查找数据; - ref_or_null,与 ref 类似,额外加上 NULL 值查找; - index_merge,使用索引合并优化技术,此时 key 列显示使用的所有索引; - unique_subquery,替代以下情况时的 eq_ref:value IN (SELECT primary_key FROM single_table WHERE some_expr); - index_subquery,与 unique_subquery 类似,用于子查询中的非唯一索引:value IN (SELECT key_column FROM single_table WHERE some_expr); - range,使用索引查找范围值; - index,与 ALL 类型相同,只不过扫描的是索引; - ALL,全表扫描,通常表示存在性能问题 |
possible_keys | 可能用到的索引,实际上不一定使用。 |
key | 实际使用的索引。 |
key_len | 实际使用的索引的长度。 |
ref | 用于和 key 中的索引进行比较的字段或者常量,从而判断是否返回数据行。 |
rows | 执行查询需要检查的行数,对于 InnoDB 是一个估计值。 |
filtered | 根据查询条件过滤之后行数百分比,rows × filtered 表示进入下一步处理的行数。 |
Extra | 包含了额外的信息。例如 Using temporary 表示使用了临时表,Using filesort 表示需要额外的排序操作等。 |
对于上面的示例,只有一个 SELECT 子句,id 都为 1;首先对 employees 表执行全表扫描(type = ALL),处理了 107 行数据,使用 WHERE 条件过滤后预计剩下 33.33% 的数据(估计不准确);然后针对这些数据,依次使用 departments 表的主键(key = PRIMARY)查找一行匹配的数据(type = eq_ref、rows = 1)。
使用 MySQL 8.0 新增的 ANALYZE 选项可以显示实际执行时间等额外的信息:
EXPLAIN ANALYZE
SELECT e.first_name,e.last_name,e.salary,d.department_name
FROM employees e
JOIN departments d ON (e.department_id = d.department_id)
WHERE e.salary > 15000;
-> Nested loop inner join (cost=23.43 rows=36) (actual time=0.325..1.287 rows=3 loops=1)
-> Filter: ((e.salary > 15000.00) and (e.department_id is not null)) (cost=10.95 rows=36) (actual time=0.281..1.194 rows=3 loops=1)
-> Table scan on e (cost=10.95 rows=107) (actual time=0.266..0.716 rows=107 loops=1)
-> Single-row index lookup on d using PRIMARY (department_id=e.department_id) (cost=0.25 rows=1) (actual time=0.013..0.015 rows=1 loops=3)
其中,Nested loop inner join 表示使用嵌套循环连接的方式连接两个表,employees 为驱动表。cost 表示估算的代价,rows 表示估计返回的行数;actual time 显示了返回第一行和所有数据行花费的实际时间,后面的 rows 表示迭代器返回的行数,loops 表示迭代器循环的次数。
Oracle 执行计划
Oracle 中提供了多种查看执行计划的方法,本文使用以下方式:
- 使用 EXPLAIN PLAN FOR 命令生成并保存执行计划;
- 显示保存的执行计划。
首先,生成执行计划:
EXPLAIN PLAN FOR
SELECT e.first_name,e.last_name,e.salary,d.department_name
FROM employees e
JOIN departments d ON (e.department_id = d.department_id)
WHERE e.salary > 15000;
EXPLAIN PLAN FOR 命令不会运行 SQL 语句,因此创建的执行计划不一定与执行该语句时的实际计划相同。
该命令会将生成的执行计划保存到全局的临时表 PLAN_TABLE 中,然后使用系统包 DBMS_XPLAN 中的存储过程格式化显示该表中的执行计划。以下语句可以查看当前会话中的最后一个执行计划:
SELECT * FROM TABLE(DBMS_XPLAN.display);
PLAN_TABLE_OUTPUT |
--------------------------------------------------------------------------------------------|
Plan hash value: 1343509718 |
|
--------------------------------------------------------------------------------------------|
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time ||
--------------------------------------------------------------------------------------------|
| 0 | SELECT STATEMENT | | 44 | 1672 | 6 (17)| 00:00:01 ||
| 1 | MERGE JOIN | | 44 | 1672 | 6 (17)| 00:00:01 ||
| 2 | TABLE ACCESS BY INDEX ROWID| DEPARTMENTS | 27 | 432 | 2 (0)| 00:00:01 ||
| 3 | INDEX FULL SCAN | DEPT_ID_PK | 27 | | 1 (0)| 00:00:01 ||
|* 4 | SORT JOIN | | 44 | 968 | 4 (25)| 00:00:01 ||
|* 5 | TABLE ACCESS FULL | EMPLOYEES | 44 | 968 | 3 (0)| 00:00:01 ||
--------------------------------------------------------------------------------------------|
|
Predicate Information (identified by operation id): |
--------------------------------------------------- |
|
4 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID") |
filter("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID") |
5 - filter("E"."SALARY">15000) |
Oracle 中的 EXPLAIN PLAN FOR 支持 SELECT、UPDATE、INSERT 以及 DELETE 语句。
接下来,我们同样需要理解执行计划中各种信息的含义:
- Plan hash value 是该语句的哈希值。SQL 语句和执行计划会存储在库缓存中,哈希值相同的语句可以重用已有的执行计划,也就是软解析;
- Id 是一个序号,但不代表执行的顺序。执行的顺序按照缩进来判断,缩进越多的越先执行,同样缩进的从上至下执行。Id 前面的星号表示使用了谓词判断,参考下面的 Predicate Information;
- Operation 表示当前的操作,也就是如何访问表的数据、如何实现表的连接、如何进行排序操作等;
- Name 显示了访问的表名、索引名或者子查询等,前提是当前操作涉及到了这些对象;
- Rows 是 Oracle 估计的当前操作返回的行数,也叫基数(Cardinality);
- Bytes 是 Oracle 估计的当前操作涉及的数据量
- Cost (%CPU) 是 Oracle 计算执行该操作所需的代价;
- Time 是 Oracle 估计执行该操作所需的时间;
- Predicate Information 显示与 Id 相关的谓词信息。access 是访问条件,影响到数据的访问方式(扫描表还是通过索引);filter 是过滤条件,获取数据后根据该条件进行过滤。
在上面的示例中,Id 的执行顺序依次为 3 -> 2 -> 5 -> 4- >1。首先,Id = 3 扫描主键索引 DEPT_ID_PK,Id = 2 按主键 ROWID 访问表 DEPARTMENTS,结果已经排序;其次,Id = 5 全表扫描访问 EMPLOYEES 并且利用 filter 过滤数据,Id = 4 基于部门编号进行排序和过滤;最后 Id = 1 执行合并连接。显然,此处 Oracle 选择了排序合并连接的方式实现两个表的连接。
SQL Server 执行计划
SQL Server Management Studio 提供了查看图形化执行计划的简单方法,这里我们介绍一种通过命令查看的方法:
SET STATISTICS PROFILE ON
以上命令可以打开 SQL Server 语句的分析功能,打开之后执行的语句会额外返回相应的执行计划:
SELECT e.first_name,e.last_name,e.salary,d.department_name
FROM employees e
JOIN departments d ON (e.department_id = d.department_id)
WHERE e.salary > 15000;
first_name|last_name|salary |department_name|
----------|---------|--------|---------------|
Steven |King |24000.00|Executive |
Neena |Kochhar |17000.00|Executive |
Lex |De Haan |17000.00|Executive |
Rows|Executes|StmtText |StmtId|NodeId|Parent|PhysicalOp |LogicalOp |Argument |DefinedValues |EstimateRows|EstimateIO |EstimateCPU|AvgRowSize|TotalSubtreeCost|OutputList |Warnings|Type |Parallel|EstimateExecutions|
----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|--------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------|------------|-----------|----------|----------------|----------------------------------------------------------------------|--------|--------|--------|------------------|
3| 1|SELECT e.first_name,e.last_name,e.salary,d.department_name¶ FROM employees e¶ JOIN departments d ON (e.department_id = d.department_id)¶ WHERE e.salary > 15000 | 1| 1| 0| | | | | 2.9719627| | | | 0.007803641| | |SELECT | 0| |
3| 1| |--Nested Loops(Inner Join, OUTER REFERENCES:([e].[department_id])) | 1| 2| 1|Nested Loops |Inner Join |OUTER REFERENCES:([e].[department_id]) | | 2.9719627| 0| 0| 57| 0.007803641|[e].[first_name], [e].[last_name], [e].[salary], [d].[department_name]| |PLAN_ROW| 0| 1|
3| 1| |--Clustered Index Scan(OBJECT:([hrdb].[dbo].[employees].[emp_emp_id_pk] AS [e]), WHERE:([hrdb].[dbo].[employees].[salary] as [e].[salary]>(15000.00))) | 1| 3| 2|Clustered Index Scan|Clustered Index Scan|OBJECT:([hrdb].[dbo].[employees].[emp_emp_id_pk] AS [e]), WHERE:([hrdb].[dbo].[employees].[salary] as [e].[salary]>(15000.00)) |[e].[first_name], [e].[last_name], [e].[salary], [e].[department_id]| 3|0.0038657407| 2.747E-4| 44| 0.004140441|[e].[first_name], [e].[last_name], [e].[salary], [e].[department_id] | |PLAN_ROW| 0| 1|
3| 3| |--Clustered Index Seek(OBJECT:([hrdb].[dbo].[departments].[dept_id_pk] AS [d]), SEEK:([d].[department_id]=[hrdb].[dbo].[employees].[department_id] as [e].[department_id]) ORDERED FORWARD)| 1| 4| 2|Clustered Index Seek|Clustered Index Seek|OBJECT:([hrdb].[dbo].[departments].[dept_id_pk] AS [d]), SEEK:([d].[department_id]=[hrdb].[dbo].[employees].[department_id] as [e].[department_id]) ORDERED FORWARD|[d].[department_name] | 1| 0.003125| 1.581E-4| 26| 0.0035993|[d].[department_name] | |PLAN_ROW| 0| 3|
SQL Server 中的执行计划支持 SELECT、INSERT、UPDATE、DELETE 以及 EXECUTE 语句。
SQL Server 执行计划各个步骤的执行顺序按照缩进来判断,缩进越多的越先执行,同样缩进的从上至下执行。接下来,我们需要理解执行计划中各种信息的含义:
- Rows 表示该步骤实际产生的记录数;
- Executes 表示该步骤实际被执行的次数;
- StmtText 包含了每个步骤的具体描述,也就是如何访问和过滤表的数据、如何实现表的连接、如何进行排序操作等;
- StmtId,该语句的编号;
- NodeId,当前操作步骤的节点号,不代表执行顺序;
- Parent,当前操作步骤的父节点,先执行子节点,再执行父节点;
- PhysicalOp,物理操作,例如连接操作的嵌套循环实现;
- LogicalOp,逻辑操作,例如内连接操作;
- Argument,操作使用的参数;
- DefinedValues,定义的变量值;
- EstimateRows,估计返回的行数;
- EstimateIO,估计的 IO 成本;
- EstimateCPU,估计的 CPU 成本;
- AvgRowSize,平均返回的行大小;
- TotalSubtreeCost,当前节点累计的成本;
- OutputList,当前节点输出的字段列表;
- Warnings,预估得到的警告信息;
- Type,当前操作步骤的类型;
- Parallel,是否并行执行;
- EstimateExecutions,该步骤预计被执行的次数。
对于上面的语句,节点执行的顺序为 3 -> 4 -> 2 -> 1。首先执行第 3 行,通过聚集索引(主键)扫描 employees 表加过滤的方式返回了 3 行数据,估计的行数(3.0841121673583984)与此非常接近;然后执行第 4 行,循环使用聚集索引的方式查找 departments 表,循环 3 次每次返回 1 行数据;第 2 行是它们的父节点,表示使用 Nested Loops 方式实现 Inner Join,Argument 列(OUTER REFERENCES:([e].[department_id]))说明驱动表为 employees ;第 1 行代表了整个查询,不执行实际操作。
最后,可以使用以下命令关闭语句的分析功能:
SET STATISTICS PROFILE OFF
PostgreSQL 执行计划
PostgreSQL 中获取执行计划的方法与 MySQL 类似,也就是在 SQL 语句的前面加上 EXPLAIN 关键字:
EXPLAIN
SELECT e.first_name,e.last_name,e.salary,d.department_name
FROM employees e
JOIN departments d ON (e.department_id = d.department_id)
WHERE e.salary > 15000;
QUERY PLAN |
----------------------------------------------------------------------|
Hash Join (cost=3.38..4.84 rows=3 width=29) |
Hash Cond: (d.department_id = e.department_id) |
-> Seq Scan on departments d (cost=0.00..1.27 rows=27 width=15) |
-> Hash (cost=3.34..3.34 rows=3 width=22) |
-> Seq Scan on employees e (cost=0.00..3.34 rows=3 width=22)|
Filter: (salary > '15000'::numeric) |
PostgreSQL 中的 EXPLAIN 支持 SELECT、INSERT、UPDATE、DELETE、VALUES、EXECUTE、DECLARE、CREATE TABLE AS 以及 CREATE MATERIALIZED VIEW AS 语句。
PostgreSQL 执行计划的顺序按照缩进来判断,缩进越多的越先执行,同样缩进的从上至下执行。
对于以上示例,首先对 employees 表执行全表扫描(Seq Scan),使用 salary > 15000 作为过滤条件;cost 分别显示了预估的返回第一行的成本(0.00)和返回所有行的成本(3.34);rows 表示预估返回的行数;width 表示预估返回行的大小(单位 Byte)。然后将扫描结果放入到内存哈希表中,两个 cost 都等于 3.34,因为是在扫描完所有数据后一次性计算并存入哈希表。接下来扫描 departments 并且根据 department_id 计算哈希值,然后和前面的哈希表进行匹配(d.department_id = e.department_id)。最上面的一行表明数据库采用的是 Hash Join 实现连接操作。
PostgreSQL 中的 EXPLAIN 也可以使用 ANALYZE 选项显示语句的实际运行时间和更多信息:
EXPLAIN ANALYZE
SELECT e.first_name,e.last_name,e.salary,d.department_name
FROM employees e
JOIN departments d ON (e.department_id = d.department_id)
WHERE e.salary > 15000;
QUERY PLAN |
----------------------------------------------------------------------------------------------------------------|
Hash Join (cost=3.38..4.84 rows=3 width=29) (actual time=0.347..0.382 rows=3 loops=1) |
Hash Cond: (d.department_id = e.department_id) |
-> Seq Scan on departments d (cost=0.00..1.27 rows=27 width=15) (actual time=0.020..0.037 rows=27 loops=1) |
-> Hash (cost=3.34..3.34 rows=3 width=22) (actual time=0.291..0.292 rows=3 loops=1) |
Buckets: 1024 Batches: 1 Memory Usage: 9kB |
-> Seq Scan on employees e (cost=0.00..3.34 rows=3 width=22) (actual time=0.034..0.280 rows=3 loops=1)|
Filter: (salary > '15000'::numeric) |
Rows Removed by Filter: 104 |
Planning Time: 1.053 ms |
Execution Time: 0.553 ms |
EXPLAIN ANALYZE 通过执行语句获得了更多的信息。其中,actual time 是每次迭代实际花费的平均时间(ms),也分为启动时间和完成时间;loops 表示迭代次数;Hash 操作还会显示桶数(Buckets)、分批数量(Batches)以及占用的内存(Memory Usage),Batches 大于 1 意味着需要使用到磁盘的临时存储;Planning Time 是生成执行计划的时间;Execution Time 是执行语句的实际时间,不包括 Planning Time。
SQLite 执行计划
SQLite 也提供了 EXPLAIN QUERY PLAN 命令,用于获取 SQL 语句的执行计划:
sqlite> EXPLAIN QUERY PLAN
...> SELECT e.first_name,e.last_name,e.salary,d.department_name
...> FROM employees e
...> JOIN departments d ON (e.department_id = d.department_id)
...> WHERE e.salary > 15000;
QUERY PLAN
|--SCAN TABLE employees AS e
`--SEARCH TABLE departments AS d USING INTEGER PRIMARY KEY (rowid=?)
SQLite 中的 EXPLAIN QUERY PLAN 支持 SELECT、INSERT、UPDATE、DELETE 等语句。
SQLite 执行计划同样按照缩进来显示,缩进越多的越先执行,同样缩进的从上至下执行。以上示例先扫描 employees 表,然后针对该结果依次通过主键查找 departments 中的数据。SQLite 只支持一种连接实现,也就是 nested loops join。
另外,SQLite 中的简单 EXPLAIN 也可以用于显示执行该语句的虚拟机指令序列:
sqlite> EXPLAIN
...> SELECT e.first_name,e.last_name,e.salary,d.department_name
...> FROM employees e
...> JOIN departments d ON (e.department_id = d.department_id)
...> WHERE e.salary > 15000;
addr opcode p1 p2 p3 p4 p5 comment
---- ------------- ---- ---- ---- ------------- -- -------------
0 Init 0 15 0 00 Start at 15
1 OpenRead 0 5 0 11 00 root=5 iDb=0; employees
2 OpenRead 1 2 0 2 00 root=2 iDb=0; departments
3 Rewind 0 14 0 00
4 Column 0 7 1 00 r[1]=employees.salary
5 Le 2 13 1 (BINARY) 53 if r[1]<=r[2] goto 13
6 Column 0 10 3 00 r[3]=employees.department_id
7 SeekRowid 1 13 3 00 intkey=r[3]
8 Column 0 1 4 00 r[4]=employees.first_name
9 Column 0 2 5 00 r[5]=employees.last_name
10 Column 0 7 6 00 r[6]=employees.salary
11 Column 1 1 7 00 r[7]=departments.department_name
12 ResultRow 4 4 0 00 output=r[4..7]
13 Next 0 4 0 01
14 Halt 0 0 0 00
15 Transaction 0 0 8 0 01 usesStmtJournal=0
16 Integer 15000 2 0 00 r[2]=15000
17 Goto 0 1 0 00