限定120分钟科研挑战,o1和Claude表现超越人类

人工智能
前2小时,基于Claude 3.5 Sonnet和o1-preview构建的Agent(智能体)表现远超人类。但拐点过后,AI能力增速(在8小时内)却始终追不上人类。

2小时内,Claude和o1就能超过人类专家平均科研水平。

甚至AI还会偷摸儿“作弊”(doge)。事情是这样的——

人类 VS AI科研能力大比拼,也有新的评估基准了。

代号“RE-Bench”,由非营利研究机构METR推出,目的是搞清:当前AI智能体在自动化科研方面有多接近人类专家水平。

注意看,一声令下之后,AI和50多位人类专家开始暗自较劲:

前2小时,基于Claude 3.5 Sonnet和o1-preview构建的Agent(智能体)表现远超人类。

但拐点过后,AI能力增速(在8小时内)却始终追不上人类。

图片

时间拉得更长(至32小时)之后,研究得出结论,目前AI智能体更适合并行处理大量独立短实验。

图片

看完上述结果,知名预测师Eli Lifland认为这“显著缩短”了他关于AGI的时间表(连续两年将2027年作为中位数),由此也在Reddit引起热议。

图片

𝕏上也有人表示,AI自动搞科研可能对推动爆炸性经济增长至关重要。

图片

甚至有人脑洞大开,开始美滋滋畅想躺着赚钱的生活(doge):

以后AI智能体来做科研,然后雇一群人类写代码……

图片

AI更适合大量并行短时间任务,长期科研还得靠人类

在RE-Bench上,研究对比了基于大语言模型构建的Agent(目前主要公布了Claude 3.5 Sonnet、o1-preview)和50+人类专家的科研能力。

值得注意的是,这些专家都有强大机器学习背景,其中很多人在顶级行业实验室或机器学习博士项目中工作。

图片

一番PK后,研究得出了以下主要结论:

  • 2小时内,Claude和o1表现远超人类专家。但随着时间增加,人类专家的能力提升更显著;
  • 在提交新解决方案的速度上,AI是人类专家的十倍以上,且偶尔能找到非常成功的解决方案;
  • 在编写高效GPU内核方面,AI表现超越所有人类;
  • AI的运行成本远低于人类专家;
  • ……

总之一句话,不仅AI和人类各有所长,且不同AI都有自己最佳的科研节奏。

人类更适应更复杂、更长时间的科研,AI更适应大量并行短任务。

图片

回到研究起点,METR之所以提出RE-Bench主要是发现:虽然很多政府和公司都在强调,AI智能体能否自动研发是一项关键能力。但问题是:

现有的评估往往侧重于短期、狭窄的任务,并且缺乏与人类专家的直接比较。

图片

因此,RE-Bench想做的事儿,就是全面评估AI科研所需的技能。本次研究一共提出了7项:

  • 高效编程:特别是在优化算法和内核函数(如GPU内核)方面。
  • 机器学习理论与实践:熟悉机器学习模型的训练、调优和评估,包括神经网络架构、超参数选择和性能优化;
  • 数据处理与分析。
  • 创新思维:能够在面对复杂问题时提出新的方法和策略,以及跨领域思考。
  • 技术设计:能够设计和实现复杂的系统和解决方案,包括软件架构和研究流程。
  • 问题解决。
  • 自动化与工具开发:能够开发和使用自动化工具来加速研究流程。

这些任务被设计在≤8小时内,以便人类专家可以使用合理的计算资源完成,从而实现人类与AI的直接比较。

图片

而且主办方特意提醒,要想获得高分,就必须最大化利用计算资源来完成这些复杂任务。

图片

通常来说,RE-Bench的运行机制如下:

首先,7项任务都是一个独立的评估环境,各自都有一个清晰的目标,比如优化一个GPU内核或者调整一个机器学习模型的超参数。

为了确保任务的可比性,每个环境都提供了一个参考解决方案,这个解决方案是有效的,但效率较低,为Agent和人类专家提供了一个基准点。

AI和人类专家都可以访问这些环境,并且都有权限使用所需的计算资源,如GPU。

然后,AI通过自然语言处理和编程能力来执行任务,而人类专家则通过编码和实验来完成任务。

执行结束后,每个环境都有一个评分函数,用于衡量Agent或人类专家提交的解决方案的效果。

当然,评分函数会根据解决方案的性能给出一个数值得分,这个得分随后会被归一化,以便于在不同环境之间进行比较。

图片

需要注意,过程中还涉及时间预算分配(time budget)。实际情况是,人类专家通常被分配8小时来完成任务,而AI则根据实验设计在不同的时间限制下进行评估。

举个例子,对AI来说,8小时的预算可以用于一次8小时的尝试,也可以分成16次、每次30分钟的尝试。

最后,由于在任务执行过程中,研究会收集AI和人类专家的解决方案日志,以及它们的得分记录。因此最终将根据这些记录来评估不同参与者的进步和表现。

实验结果显示,在2小时内,基于Claude 3.5 Sonnet和o1-preview构建的智能体表现远超人类。

图片

更具体来看,如果不取多次运行中的最佳结果(每个单独绘制8小时运行),AI最初比人类进步更快,但提高分数的速度较慢。

图片

扩大时间线来看,整体上人类专家在较少的长时间尝试中表现更佳,而AI则从大量并行、独立的短时间尝试中受益。

图片

令人印象深刻的是,尽管大多数AI只能轻微改进参考解决方案,但一个o1-preview智能体在优化Triton内核运行时间的任务中超越了人类专家的最佳解决方案。

图片

与此同时,评估过程中甚至发现了AI存在“作弊”行为。例如,o1-preview智能体在应该减少训练脚本运行时间的任务中,编写了只是复制最终输出的代码。

图片

来自非营利研究机构METR

以上这项新的基准出自METR,作为一家非营利研究机构,他们主要通过实证测试评估可能对社会造成灾难性危害的AI系统。

图片

目前,RE-Bench只包含7项任务,基准的劣势也很明显:

图片

而且还伴随着一个老生常谈的问题:

一旦7项任务公开,如何防止基准测试数据污染问题?

图片

对此,METR特别提出了几项措施,来避免将这些任务包含在LLM训练数据中,并防止过拟合。

  • 用户应避免发布未受保护的解决方案,以减少过拟合的风险。
  • 用户不应将评估材料提供给可能用于训练的API或服务。
  • 评估材料不应用于训练或提高前沿模型的能力,除非是为了开发或实施危险能力评估。

图片

更多细节欢迎查阅原论文。

论文:https://metr.org/AI_R_D_Evaluation_Report.pdf。
博客:https://metr.org/blog/2024-11-22-evaluating-r-d-capabilities-of-llms/。
GitHub:https://github.com/METR/ai-rd-tasks/tree/main。
实验详细记录:https://transcripts.metr.org/。

参考链接:
[1]https://twitter.com/METR_Evals/status/1860061711849652378。
[2]https://www.reddit.com/r/singularity/comments/1gxzslg/top_forecaster_significantly_shortens_his/。

责任编辑:姜华 来源: 量子位
相关推荐

2024-10-23 09:20:00

2023-09-26 22:12:13

数据仓库Doris

2017-06-09 11:20:47

高考AI教育

2024-10-30 14:25:00

GitHub模型

2018-03-12 21:31:24

区块链

2015-11-23 17:34:33

秒借

2017-03-16 08:46:57

延时消息环形队列数据结构

2024-09-18 08:40:00

智能模型AI

2017-05-18 11:11:20

Google谷歌开发者大会

2019-06-14 09:34:59

Linux 系统 数据

2018-03-12 14:37:50

区块链比特币架构

2018-03-23 11:56:09

相似性推荐推荐算法推荐

2015-11-17 16:22:22

桌面虚拟化深信服

2024-09-19 17:44:04

2024-11-07 15:40:00

2018-03-23 11:23:14

2017-02-22 14:46:04

Leader-Foll线程

2012-06-28 10:26:51

Silverlight

2011-10-11 10:01:26

2018-03-23 11:33:56

协同过滤程序算法
点赞
收藏

51CTO技术栈公众号