C#常见的四种经典查找算法

开发 前端
线性查找算法是一种简单的查找算法,用于在一个数组或列表中查找一个特定的元素。它从数组的第一个元素开始,逐个检查每个元素,直到找到所需的元素或搜索完整个数组。线性查找的时间复杂度为O(n),其中n是数组中的元素数量。

前言

在编程领域,数据结构与算法是构建高效、可靠和可扩展软件系统的基石。它们对于提升程序性能、优化资源利用以及解决复杂问题具有至关重要的作用。今天大姚给大家分享四种C#中常见的经典查找算法。

C#二分查找算法

简介

二分查找算法是一种在有序数组中查找特定元素的搜索算法。

代码实现

public class 二分查找算法
    {
        /// <summary>
        /// 二分查找算法
        /// </summary>
        /// <param name="arr">arr是已排序的数组</param>
        /// <param name="target">target是要查找的目标值</param>
        /// <returns>目标值在数组中的索引,如果未找到则返回-1</returns>
        public static int BinarySearch(int[] arr, int target)
        {
            int left = 0; // 定义左指针
            int right = arr.Length - 1; // 定义右指针

            while (left <= right)
            {
                // 计算中间元素的索引
                int mid = left + (right - left) / 2;

                if (arr[mid] == target)
                {
                    // 如果中间元素等于目标值
                    return mid; // 查找成功,返回索引
                }
                else if (arr[mid] < target)
                {
                    // 如果目标值小于中间元素,则在左半部分查找
                    left = mid + 1;
                }
                else
                {
                    // 如果目标值大于中间元素,则在右半部分查找
                    right = mid - 1;
                }
            }

            // 未找到 target,返回-1
            return -1;
        }

        public static void BinarySearchRun()
        {
            int[] arr = { 1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59 }; //注意:这里的数组是已排序的数组
            int target = 31; //需要要查找的目标值

            int result = BinarySearch(arr, target); //调用二分查找方法

            if (result == -1)
            {
                Console.WriteLine("元素未找到");
            }
            else
            {
                Console.WriteLine($"元素找到,索引为:{result},值为:{arr[result]}");
            }
        }
    }
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.

C#线性查找算法

简介

线性查找算法是一种简单的查找算法,用于在一个数组或列表中查找一个特定的元素。它从数组的第一个元素开始,逐个检查每个元素,直到找到所需的元素或搜索完整个数组。线性查找的时间复杂度为O(n),其中n是数组中的元素数量。

代码实现

public static void LinearSearchRun()
        {
            int[] arr = { 2, 3, 4, 10, 40, 50, 100, 77, 88, 99 };
            int target = 100;

            int result = LinearSearch(arr, target);

            // 输出结果
            if (result == -1)
            {
                Console.WriteLine("元素未找到");
            }
            else
            {
                Console.WriteLine($"元素在索引 {result} 处找到,index = {result}");
            }
        }

        /// <summary>
        /// 线性查找函数
        /// </summary>
        /// <param name="arr">arr</param>
        /// <param name="target">target</param>
        /// <returns></returns>
        public static int LinearSearch(int[] arr, int target)
        {
            // 遍历数组
            for (int i = 0; i < arr.Length; i++)
            {
                // 如果找到目标值,返回其索引
                if (arr[i] == target)
                {
                    return i;
                }
            }
            // 如果没有找到,则返回-1
            return -1;
        }
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.

C#二叉搜索树算法

简介

二叉搜索树(Binary Search Tree,简称BST)是一种节点有序排列的二叉树数据结构。

代码实现

namespace HelloDotNetGuide.常见算法
{
    public class 二叉搜索树算法
    {
        public static void BinarySearchTreeRun()
        {
            var bst = new BinarySearchTree();

            // 插入一些值到树中
            bst.Insert(50);
            bst.Insert(30);
            bst.Insert(20);
            bst.Insert(40);
            bst.Insert(70);
            bst.Insert(60);
            bst.Insert(80);
            bst.Insert(750);

            Console.WriteLine("中序遍历(打印有序数组):");
            bst.InorderTraversal();

            Console.WriteLine("\n");

            // 查找某些值
            Console.WriteLine("Search for 40: " + bst.Search(40)); // 输出: True
            Console.WriteLine("Search for 25: " + bst.Search(25)); // 输出: False

            Console.WriteLine("\n");

            // 删除某个值
            bst.Delete(50);
            Console.WriteLine("删除50后:");
            bst.InorderTraversal();
        }
    }

    /// <summary>
    /// 定义二叉搜索树的节点结构
    /// </summary>
    public class TreeNode
    {
        public int Value;
        public TreeNode Left;
        public TreeNode Right;

        public TreeNode(int value)
        {
            Value = value;
            Left = null;
            Right = null;
        }
    }

    /// <summary>
    /// 定义二叉搜索树类
    /// </summary>
    public class BinarySearchTree
    {
        private TreeNode root;

        public BinarySearchTree()
        {
            root = null;
        }

        #region 插入节点

        /// <summary>
        /// 插入新值到二叉搜索树中
        /// </summary>
        /// <param name="value">value</param>
        public void Insert(int value)
        {
            if (root == null)
            {
                root = new TreeNode(value);
            }
            else
            {
                InsertRec(root, value);
            }
        }

        private void InsertRec(TreeNode node, int value)
        {
            if (value < node.Value)
            {
                if (node.Left == null)
                {
                    node.Left = new TreeNode(value);
                }
                else
                {
                    InsertRec(node.Left, value);
                }
            }
            else if (value > node.Value)
            {
                if (node.Right == null)
                {
                    node.Right = new TreeNode(value);
                }
                else
                {
                    InsertRec(node.Right, value);
                }
            }
            else
            {
                //值已经存在于树中,不再插入
                return;
            }
        }

        #endregion

        #region 查找节点

        /// <summary>
        /// 查找某个值是否存在于二叉搜索树中
        /// </summary>
        /// <param name="value">value</param>
        /// <returns></returns>
        public bool Search(int value)
        {
            return SearchRec(root, value);
        }

        private bool SearchRec(TreeNode node, int value)
        {
            // 如果当前节点为空,表示未找到目标值
            if (node == null)
            {
                return false;
            }

            // 如果找到目标值,返回true
            if (node.Value == value)
            {
                return true;
            }

            // 递归查找左子树或右子树
            if (value < node.Value)
            {
                return SearchRec(node.Left, value);
            }
            else
            {
                return SearchRec(node.Right, value);
            }
        }

        #endregion

        #region 中序遍历

        /// <summary>
        /// 中序遍历(打印有序数组)
        /// </summary>
        public void InorderTraversal()
        {
            InorderTraversalRec(root);
        }

        private void InorderTraversalRec(TreeNode root)
        {
            if (root != null)
            {
                InorderTraversalRec(root.Left);
                Console.WriteLine(root.Value);
                InorderTraversalRec(root.Right);
            }
        }

        #endregion

        #region 删除节点

        /// <summary>
        /// 删除某个值
        /// </summary>
        /// <param name="val">val</param>
        public void Delete(int val)
        {
            root = DeleteNode(root, val);
        }

        private TreeNode DeleteNode(TreeNode node, int val)
        {
            if (node == null)
            {
                return null;
            }

            if (val < node.Value)
            {
                node.Left = DeleteNode(node.Left, val);
            }
            else if (val > node.Value)
            {
                node.Right = DeleteNode(node.Right, val);
            }
            else
            {
                // 节点有两个子节点
                if (node.Left != null && node.Right != null)
                {
                    // 使用右子树中的最小节点替换当前节点
                    TreeNode minNode = FindMin(node.Right);
                    node.Value = minNode.Value;
                    node.Right = DeleteNode(node.Right, minNode.Value);
                }
                // 节点有一个子节点或没有子节点
                else
                {
                    TreeNode? temp = node.Left != null ? node.Left : node.Right;
                    node = temp;
                }
            }

            return node;
        }

        /// <summary>
        /// 找到树中的最小节点
        /// </summary>
        /// <param name="node"></param>
        /// <returns></returns>
        private TreeNode FindMin(TreeNode node)
        {
            while (node.Left != null)
            {
                node = node.Left;
            }
            return node;
        }

        #endregion
    }
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.
  • 116.
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.
  • 124.
  • 125.
  • 126.
  • 127.
  • 128.
  • 129.
  • 130.
  • 131.
  • 132.
  • 133.
  • 134.
  • 135.
  • 136.
  • 137.
  • 138.
  • 139.
  • 140.
  • 141.
  • 142.
  • 143.
  • 144.
  • 145.
  • 146.
  • 147.
  • 148.
  • 149.
  • 150.
  • 151.
  • 152.
  • 153.
  • 154.
  • 155.
  • 156.
  • 157.
  • 158.
  • 159.
  • 160.
  • 161.
  • 162.
  • 163.
  • 164.
  • 165.
  • 166.
  • 167.
  • 168.
  • 169.
  • 170.
  • 171.
  • 172.
  • 173.
  • 174.
  • 175.
  • 176.
  • 177.
  • 178.
  • 179.
  • 180.
  • 181.
  • 182.
  • 183.
  • 184.
  • 185.
  • 186.
  • 187.
  • 188.
  • 189.
  • 190.
  • 191.
  • 192.
  • 193.
  • 194.
  • 195.
  • 196.
  • 197.
  • 198.
  • 199.
  • 200.
  • 201.
  • 202.
  • 203.
  • 204.
  • 205.
  • 206.
  • 207.
  • 208.
  • 209.
  • 210.
  • 211.
  • 212.
  • 213.
  • 214.
  • 215.
  • 216.
  • 217.
  • 218.
  • 219.
  • 220.
  • 221.
  • 222.
  • 223.
  • 224.
  • 225.
  • 226.
  • 227.
  • 228.
  • 229.
  • 230.
  • 231.
  • 232.
  • 233.
  • 234.
  • 235.
  • 236.
  • 237.
  • 238.
  • 239.
  • 240.
  • 241.

C#哈希查找算法

简介

哈希查找算法是一种高效的查找算法,通过将键值映射到哈希表中的位置来实现快速访问。在C#中,哈希查找通常通过哈希表(Hashtable)或字典(Dictionary)来实现。

代码实现

public class 哈希查找算法
    {
        /// <summary>
        /// 哈希查找函数
        /// </summary>
        /// <param name="target">target</param>
        public static void HashSearchFunctionRun(int target)
        {
            //创建一个字典来存储键值对
            var dic = new Dictionary<int, string>();
            dic.Add(1, "one");
            dic.Add(2, "two");
            dic.Add(3, "three");

            //查找目标值是否在Dictionary中存在
            //TryGetValue方法可以返回一个bool值和值,如果找到了目标值,则返回true和对应的值,否则返回false和默认值
            string value;
            if (dic.TryGetValue(target, out value))
            {
                Console.WriteLine("Found Data: " + value);
            }
            else
            {
                Console.WriteLine("Not Found Data.");
            }
        }
    }
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.


责任编辑:武晓燕 来源: 追逐时光者
相关推荐

2009-09-08 17:20:01

C#排序算法

2009-08-26 15:04:35

C#转换

2024-02-28 09:22:03

限流算法数量

2009-08-20 09:52:31

C#参数类型

2009-08-27 15:00:55

C#线程控制

2009-08-05 14:09:04

C#日期转换

2011-11-24 16:34:39

Java

2009-09-17 16:55:58

C#组件设计

2009-09-22 14:20:39

C#播放声音

2021-06-04 10:45:31

软件架构分布式

2024-06-24 01:00:00

2021-08-11 20:17:22

推荐算法系统

2017-07-14 16:28:21

2024-05-29 13:18:12

线程Thread​方式

2010-08-13 13:31:48

Flex效果组件

2021-06-24 17:55:40

Python 开发编程语言

2011-06-30 14:45:52

外链

2021-08-12 11:37:23

数据分析错误

2024-11-07 11:17:50

2015-03-19 15:13:20

PHP基本排序算法代码实现
点赞
收藏

51CTO技术栈公众号