o1突发内幕曝光?谷歌8月论文已揭示原理,大模型光有软件不存在护城河

人工智能 新闻
有人发现,谷歌DeepMind一篇发表在8月的论文,揭示原理和o1的工作方式几乎一致。

发布不到1周,OpenAI最强模型o1的护城河已经没有了。

有人发现,谷歌DeepMind一篇发表在8月的论文,揭示原理和o1的工作方式几乎一致

图片

这项研究表明,增加测试时(test-time)计算比扩展模型参数更有效。

基于论文提出的计算最优(compute-optimal)测试时计算扩展策略,规模较小的基础模型在一些任务上可以超越一个14倍大的模型。

网友表示:

这几乎就是o1的原理啊。

众所周知,奥特曼喜欢领先于谷歌,所以这才是o1抢先发preview版的原因?

图片

有人由此感慨:

确实正如谷歌自己所说的,没有人护城河,也永远不会有人有护城河。

图片

就在刚刚,OpenAI将o1-mini的速度提高7倍,每天都能使用50条;o1-preview则提到每周50条。

图片

计算量节省4倍

谷歌DeepMind这篇论文的题目是:优化LLM测试时计算比扩大模型参数规模更高效

研究团队从人类的思考模式延伸,既然人面对复杂问题时会用更长时间思考改善决策,那么LLM是不是也能如此?

换言之,面对一个复杂任务时,是否能让LLM更有效利用测试时的额外计算以提高准确性。

此前一些研究已经论证,这个方向确实可行,不过效果比较有限。

因此该研究想要探明,在使用比较少的额外推理计算时,就能能让模型性能提升多少?

他们设计了一组实验,使用PaLM2-S*在MATH数据集上测试。

主要分析了两种方法:

(1)迭代自我修订:让模型多次尝试回答一个问题,在每次尝试后进行修订以得到更好的回答。
(2)搜索:在这种方法中,模型生成多个候选答案,

图片

可以看到,使用自我修订方法时,随着测试时计算量增加,标准最佳N策略(Best-of-N)与计算最优扩展策略之间的差距逐渐扩大。

使用搜索方法,计算最优扩展策略在初期表现出比较明显优势。并在一定情况下,达到与最佳N策略相同效果,计算量仅为其1/4

在与预训练计算相当的FLOPs匹配评估中,对比PaLM 2-S*(使用计算最优策略)一个14倍大的预训练模型(不进行额外推理)。

结果发现,使用自我修订方法时,当推理tokns远小于预训练tokens时,使用测试时计算策略的效果比预训练效果更好。但是当比率增加,或者在更难的问题上,还是预训练的效果更好。

也就是说,在两种情况下,根据不同测试时计算扩展方法是否有效,关键在于提示的难度

研究还进一步比较不同的PRM搜索方法,结果显示前向搜索(最右)需要更多的计算量。

图片

在计算量较少的情况下,使用计算最优策略最多可节省4倍资源。

图片

对比OpenAI的o1模型,这篇研究几乎是给出了相同的结论。

o1模型学会完善自己的思维过程,尝试不同的策略,并认识到自己的错误。并且随着更多的强化学习(训练时计算)和更多的思考时间(测试时计算),o1 的性能持续提高。

不过OpenAI更快一步发布了模型,而谷歌这边使用了PaLM2,在Gemini2上还没有更新的发布。

网友:护城河只剩下硬件了?

这样的新发现不免让人想到去年谷歌内部文件里提出的观点:

我们没有护城河,OpenAI也没有。开源模型可以打败ChatGPT。

如今来看,各家研究速度都很快,谁也不能确保自己始终领先。

唯一的护城河,或许是硬件。

图片

(所以马斯克哐哐建算力中心?)

有人表示,现在英伟达直接掌控谁能拥有更多算力。那么如果谷歌/微软开发出了效果更好的定制芯片,情况又会如何呢?

图片

值得一提的是,前段时间OpenAI首颗芯片曝光,将采用台积电最先进的A16埃米级工艺,专为Sora视频应用打造。

显然,大模型战场,只是卷模型本身已经不够了。

责任编辑:张燕妮 来源: 量子位
相关推荐

2024-11-29 13:57:38

2023-05-05 13:14:28

谷歌AI

2024-09-13 09:26:17

2023-07-12 12:48:35

人工智能谷歌

2024-09-24 11:01:03

2023-07-22 13:09:51

模型开源

2024-02-04 13:56:03

2024-09-13 10:06:21

2021-06-23 14:12:22

SaaS护城河头部企业

2012-10-24 13:53:25

2017-12-26 08:25:57

硬盘数据丢失

2017-10-17 06:03:42

2024-12-02 09:20:00

2024-09-13 06:32:25

2024-10-05 00:00:00

2024-12-02 09:37:09

大模型AI产品

2024-11-25 15:50:00

模型训练

2024-07-22 08:03:55

2024-12-02 12:24:15

2024-11-07 15:40:00

点赞
收藏

51CTO技术栈公众号