日志与追踪的完美融合:OpenTelemetry MDC实践指南

开发 前端
通常我们排查问题的方式是先查询异常日志,判断是否是当前系统的问题。如果不是,则在日志中捞出 trace_id 再到链路查询系统中查询链路,看看具体是哪个系统的问题,然后再做具体的排查。

前言

通常我们排查问题的方式是先查询异常日志,判断是否是当前系统的问题。

如果不是,则在日志中捞出 trace_id 再到链路查询系统中查询链路,看看具体是哪个系统的问题,然后再做具体的排查。

类似于这样:

图片图片

日志中会打印 trace_id 和 span_id。

如果日志系统做的比较完善的话,还可以直接点击 trace_id 跳转到链路系统里直接查询链路信息。

MDC

这里的日志里关联 trace 信息的做法有个专有名词:MDC:(Mapped Diagnostic Context)。

简单来说就是用于排查问题的上下文信息,通常是由键值对组成,类似于这样的数据:

{  
  "timestamp" : "2024-08-05 17:27:31.097",  
  "level" : "INFO",  
  "thread" : "http-nio-9191-exec-1",  
  "mdc" : {  
    "trace_id" : "26242f945af80b044a60226af00211fb",  
    "trace_flags" : "01",  
    "span_id" : "3a7842b3e28ed5c8"  
  },  
  "logger" : "com.example.demo.DemoApplication",  
  "message" : "request: name: \"1232\"\n",  
  "context" : "default"  
}

在 Java 中的 Log4j 和 Logback 都有提供对应的实现。

如果我们使用了 OpenTelemetry 提供的 javaagent 再配合 logback 或者 Log4j 时就会自动具备打印 MDC 的能力:

java -javaagent:/Users/chenjie/Downloads/blog-img/demo/opentelemetry-javaagent-2.4.0-SNAPSHOT.jar xx.jar

比如我们只需要这样配置这样一个JSON 输出的 logback 即可:

<appender name="PROJECT_LOG" class="ch.qos.logback.core.rolling.RollingFileAppender">  
    <file>${PATH}/demo.log</file>  
  
    <rollingPolicy class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">  
        <fileNamePattern>${PATH}/demo_%i.log</fileNamePattern>  
        <maxIndex>1</maxIndex>  
    </rollingPolicy>  
  
    <triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">  
        <maxFileSize>100MB</maxFileSize>  
    </triggeringPolicy>  
  
    <layout class="ch.qos.logback.contrib.json.classic.JsonLayout">  
        <jsonFormatter  
                class="ch.qos.logback.contrib.jackson.JacksonJsonFormatter">  
            <prettyPrint>true</prettyPrint>  
        </jsonFormatter>  
        <timestampFormat>yyyy-MM-dd' 'HH:mm:ss.SSS</timestampFormat>  
    </layout>  
  
</appender>  
  
<root level="INFO">  
    <appender-ref ref="STDOUT"/>  
    <appender-ref ref="PROJECT_LOG"/>  
</root>

图片图片

就会在日志文件中输出 JSON 格式的日志,并且带上 MDC 的信息。

自动 MDC 的原理

我也比较好奇 OpenTelemetry 是如何自动写入 MDC 信息的,这里以 logback 为例。

@Override  
public ElementMatcher<TypeDescription> typeMatcher() {  
  return implementsInterface(named("ch.qos.logback.classic.spi.ILoggingEvent"));  
}  
  
@Override  
public void transform(TypeTransformer transformer) {  
  transformer.applyAdviceToMethod(  
      isMethod()  
          .and(isPublic())  
          .and(namedOneOf("getMDCPropertyMap", "getMdc"))  
          .and(takesArguments(0)),  
      LoggingEventInstrumentation.class.getName() + "$GetMdcAdvice");  
}

会在调用 ch.qos.logback.classic.spi.ILoggingEvent.getMDCPropertyMap()/getMdc() 这两个函数中进行埋点。

这些逻辑都是写在 javaagent 中的。

这个函数其实默认情况下会返回一个 logback 内置 MDC 的 map 数据(这里的数据我们可以自定义配置)。

而这里要做的就是将 trace 的上下文信息写入这个 mdcPropertyMap 中。

以下是 OpenTelemetry agent 中的源码:

Map<String, String> spanContextData = new HashMap<>();  
  
SpanContext spanContext = Java8BytecodeBridge.spanFromContext(context).getSpanContext();  
  
if (spanContext.isValid()) {  
  spanContextData.put(traceIdKey(), spanContext.getTraceId());  
  spanContextData.put(spanIdKey(), spanContext.getSpanId());  
  spanContextData.put(traceFlagsKey(), spanContext.getTraceFlags().asHex());  
}  
spanContextData.putAll(ConfiguredResourceAttributesHolder.getResourceAttributes());  
  
if (LogbackSingletons.addBaggage()) {  
  Baggage baggage = Java8BytecodeBridge.baggageFromContext(context);  
  
  // using a lambda here does not play nicely with instrumentation bytecode process  
  // (Java 6 related errors are observed) so relying on for loop instead  for (Map.Entry<String, BaggageEntry> entry : baggage.asMap().entrySet()) {  
    spanContextData.put(  
        // prefix all baggage values to avoid clashes with existing context  
        "baggage." + entry.getKey(), entry.getValue().getValue());  
  }}  
  
if (contextData == null) {  
  contextData = spanContextData;  
} else {  
  contextData = new UnionMap<>(contextData, spanContextData);  
}

这就是核心的写入逻辑,从这个代码中也可以看出直接从上线文中获取的 span 的 context,而我们所需要的 trace_id/span_id  都是存放在 context 中的,只需要 get 出来然后写入进 map 中即可。

从源码里还得知,只要我们开启 -Dotel.instrumentation.logback-mdc.add-baggage=true 配置还可以将 baggage 中的数据也写入到 MDC 中。

而得易于 OpenTelemetry 中的 trace 是可以跨线程传输的,所以即便是我们在多线程里打印日志时 MDC 数据依然可以准确无误的传递。

MDC 的原理

public static final String MDC_ATTR_NAME = "mdc";

图片图片

在 logback 的实现中是会调用刚才的 getMDCPropertyMap() 然后写入到一个 key 为 mdc 的 map 里,最终可以写入到文件或者控制台。

这样整个原理就可以串起来了。

自定义日志 数据

提到可以自定义 MDC 数据其实也是有使用场景的,比如我们的业务系统经常有类似的需求,需要在日志中打印一些常用业务数据:

  • userId、userName
  • 客户端 IP等信息时

此时我们就可以创建一个 Layout 类来继承 ch.qos.logback.contrib.json.classic.JsonLayout:

public class CustomJsonLayout extends JsonLayout {
    public CustomJsonLayout() {
    }

    protected void addCustomDataToJsonMap(Map<String, Object> map, ILoggingEvent event) {
        map.put("user_name", context.getProperty("userName"));
        map.put("user_id", context.getProperty("userId"));
        map.put("trace_id", TraceContext.traceId());
    }
}


public class CustomJsonLayoutEncoder extends LayoutWrappingEncoder<ILoggingEvent> {  
    public CustomJsonLayoutEncoder() {  
    }  
    public void start() {  
        CustomJsonLayout jsonLayout = new CustomJsonLayout();  
        jsonLayout.setContext(this.context);  
        jsonLayout.setIncludeContextName(false);  
        jsonLayout.setAppendLineSeparator(true);  
        jsonLayout.setJsonFormatter(new JacksonJsonFormatter());  
        jsonLayout.start();  
        super.setCharset(StandardCharsets.UTF_8);  
        super.setLayout(jsonLayout);  
        super.start();  
    }}

这里的 trace_id 是之前使用 skywalking 的时候由 skywalking 提供的函数:org.apache.skywalking.apm.toolkit.trace.TraceContext#traceId

接着只需要在 logback.xml 中配置这个 CustomJsonLayoutEncoder 就可以按照我们自定义的数据输出日志了:

<appender name="PROJECT_LOG" class="ch.qos.logback.core.rolling.RollingFileAppender">  
    <file>${PATH}/app.log</file>  
  
    <rollingPolicy class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">  
        <fileNamePattern>${PATH}/app_%i.log</fileNamePattern>  
        <maxIndex>1</maxIndex>  
    </rollingPolicy>  
  
    <triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">  
        <maxFileSize>100MB</maxFileSize>  
    </triggeringPolicy>  
  
    <encoder class="xx.CustomJsonLayoutEncoder"/>  
</appender>

<root level="INFO">  
    <appender-ref ref="STDOUT"/>  
    <appender-ref ref="PROJECT_LOG"/>  
</root>

虽然这个功能也可以使用日志切面来打印,但还是没有直接在日志中输出更加方便,它可以直接和我们的日志关联在一起,只是多加了这几个字段而已。

Spring Boot 使用

OpenTelemetry 有给 springboot 应用提供一个 spring-boot-starter 包,用于在不使用  javaagent 的情况下也可以自动埋点。

<dependencies>
  <dependency>
    <groupId>io.opentelemetry.instrumentation</groupId>
    <artifactId>opentelemetry-spring-boot-starter</artifactId>
    <version>OPENTELEMETRY_VERSION</version>
  </dependency>
</dependencies>

但在早期的版本中还不支持直接打印 MDC 日志:

图片图片

最新的版本已经支持

即便已经支持默认输出 MDC 后,我们依然可以自定义的内容,比如我们想修改一下 key 的名称,由 trace_id 修改为 otel_trace_id 等。

<appender name="OTEL" class="io.opentelemetry.instrumentation.logback.mdc.v1_0.OpenTelemetryAppender">
  <traceIdKey>otel_trace_id</traceIdKey>
  <spanIdKey>otel_span_id</spanIdKey>
  <traceFlagsKey>otel_trace_flags</traceFlagsKey>
</appender>

还是和之前类似,修改下 logback.xml 即可。

他的实现逻辑其实和之前的 auto instrument 中的类似,只不过使用的 API 不同而已。

auto instrument 是直接拦截代码逻辑修改 map 的返回值,而 OpenTelemetryAppender 是继承了 ch.qos.logback.core.UnsynchronizedAppenderBase 接口,从而获得了重写 MDC 的能力,但本质上都是一样的,没有太大区别。

不过使用它的前提是我们需要引入以下一个依赖:

<dependencies>
  <dependency>
    <groupId>io.opentelemetry.instrumentation</groupId>
    <artifactId>opentelemetry-logback-mdc-1.0</artifactId>
    <version>OPENTELEMETRY_VERSION</version>
  </dependency>
</dependencies>

如果不想修改 logback.yaml ,对于 springboot 来说还有更简单的方案,我们只需要使用以下配置即可自定义 MDC 数据:

logging.pattern.level = trace_id=%mdc{trace_id} span_id=%mdc{span_id} trace_flags=%mdc{trace_flags} %5p

这里的 key 也可以自定义,只要占位符没有取错即可。

使用这个的前提是需要加载  javaagent,因为这里的数据是 javaagent 里写进去的。

总结

以上就是关于 MDC 在 OpenTelemetry 中的使用,从使用和源码逻辑上都分析了一遍,希望对 MDC 和 OpenTelemetry 的理解更加深刻一些。

关于 MDC 相关的概念与使用还是很有用的,是日常排查问题必不可少的一个工具。

责任编辑:武晓燕 来源: crossoverJie
相关推荐

2024-05-21 08:09:00

OpenTelemetry仓库

2023-10-16 23:43:52

云原生可观测性

2024-06-14 08:19:45

2024-06-27 08:41:21

2015-11-04 15:13:56

华为

2012-10-19 12:49:40

NAS系统性能N8500OPS

2023-02-06 09:36:00

腾讯灯塔融合引擎

2024-06-07 07:41:03

2013-01-14 11:37:29

惠普电脑

2023-11-23 10:45:13

Next.js 14Supabase

2009-08-31 17:52:12

NehalemSSDSolaris

2012-04-26 19:46:06

反钓鱼沙龙

2024-02-01 08:00:00

百川大模型角色大模型

2019-08-01 10:57:52

开发者技能TypeScript

2012-10-29 16:22:18

遨游浏览器

2022-07-05 10:38:23

BGPCalicoMetalLB

2023-12-06 07:24:42

属性命名云原生

2024-08-21 08:09:17

2023-08-31 07:46:54

KubernetesLoki
点赞
收藏

51CTO技术栈公众号