释放你九成的带宽和内存:GZIP在解决Redis大Key方面的应用

数据库 Redis
如里你的Redis缓存中存在大量的大Key,可能先达到瓶颈的不是Redis的读写性能,很可能是你的带宽,此时只需要简单的使用GZIP压缩就能你给不仅节省88%的Redis内存空间还大大减少了数据的传输量和节省了带宽资源,而且还能使用的C端用户的资源来解压,这个ROI是非常高的。

引言

目前主流HTTP协议接口都是使用JSON格式做数据交换的,JSON数据格式有着结构简单、可读性高、跨平台,易解析等优点,同时也存在着冗余数据会占用非常多的储存空间的问题,这大大增加了JSON格式数据在存储、传输过程中的性能消耗。所以对JSON格式数据压缩后再传输、存储就变的非常的有价值,如对JSON格式数据使用GZIP压缩算法可以实现90%左右的压缩率,更小的空间可以节省存储成本和降低传输带宽成本,本文介绍GZIP压缩算法在优化Redis使用大KEY字段中的应用,通过简单压缩可以节省88%的内存空间和带宽资源。

HTTP协议开启GZIP

HTTP协议标准中是直接支持GZIP压缩算法的,通过响应头Content-Encoding: gzip来表明响应内容使用了GZIP压缩,当客户端收到数据后会使用GZIP算法对Body内容进行解压。

RFC 1952 - IETF(互联网工程任务组)标准化的Gzip文件格式规范,

RFC 2616 - HTTP 1.1 协议规范,其中包括对 Content-Encoding 头的定义

在Nginx中可以通过 gzip on开启GZIP压缩功能:

gzip on;
gzip_types text/plain text/css application/json application/javascript text/xml application/xml application/xml+rss text/javascript;

在Springboot中可以通过server.compression.enabled开启GZIP压缩功能:

server:
  port: 80
  compression:
    enabled: true
    mime-types:  application/javascript,text/css,application/json,application/xml,text/html,text/xml,text/plain
    min-response-size: 2KB
  • enabled,开启或关闭
  • mime-types,压缩的数据类型
  • min-response-size,最小压缩大小

测试GZIP

为了测试开启GZIP前后的对比效果我们写一个简单的接口:

@GetMapping("/list")
public ResponseEntity<ApiResult> list() {
    return renderOk(getData());
}

我们返回1000条JSON格式的用户信息:

private List<UserVo> getData() {
    return IntStream.range(1, 1000).mapToObj(x -> new UserVo(x,x+"+email@q63.com",x+"_公众号",x+"_赵侠客")).collect(Collectors.toList());
}
@Data
@AllArgsConstructor
public class UserVo {
    private Integer id;
    private String username;
    private String email;
    private String trueName;
}

在未开启GZIP前接口返回数据的大小是92.8KB, Content-Encoding为空,在开启GZIP后接口返回的数据大小为11.5KB,Content-Encoding为gzip,接口返回数量降低了88%。图片

当然我们也可以在接口中通过手动添加content-encoding响应头,然后通过手动调用GZIPOutputStream对返回数据进行GZIP压缩:

@GetMapping("/gzip")
public void gzip(HttpServletResponse response) throws IOException {
    response.setContentType("application/json;charset=utf-8");
    response.setHeader("content-encoding", "gzip");
    try (GZIPOutputStream gzipOutputStream = new GZIPOutputStream(response.getOutputStream())) {
        IOUtils.write(JsonUtils.toJson(getData()), gzipOutputStream);
    }
}

Redis缓存压缩

为了增加接口的响应速度我们通常会使用Redis当缓存,基本逻辑是先查Redis有没有数据如果有直接返回,如果没有会查数据库,然后再存入Redis,以下是一个简单的使用Redis当缓存的接口:

@Resource
private RedissonClient redissonClient;
public static final String REDIS_KEY = "REDIS_KEY";

@GetMapping("/redis")
public void redis(HttpServletResponse response) throws IOException {
    RBucket<String> bucket = redissonClient.getBucket(REDIS_KEY);
    String data = bucket.get();
    if (data == null) {
         data=JsonUtils.toJson(getData());
        redissonClient.getBucket(REDIS_KEY).set(data,100L, TimeUnit.SECONDS);
    }
    response.setContentType("application/json");
    IOUtils.write(data, response.getOutputStream());
}

我们分析一下这样个接口的基本数据流:

  • 第一次从数据库服务器查出92.8KB的数据传输到WEB服务器中
  • 将92.8KB的数据从WEB服务器传输到Redis服务器中
  • 后面如果命中缓存将92.8KB数据从Redis服务器传输到WEB服务器
  • 最后将92.8KB数据从WEB服务器返回给用户浏览器

使用Redis当缓存加速接口使用Redis当缓存加速接口

使用ZIP优化Redis缓存:

public static final String GZIP_REDIS_KEY = "GZIP_REDIS_KEY";

@GetMapping("/gzipRedis")
public void gzipRedis(HttpServletResponse response) throws IOException {
    RBucket<byte[]> bucket = redissonClient.getBucket(GZIP_REDIS_KEY);
    byte[] data = bucket.get();
    if (data == null) {
        String jsnotallow=JsonUtils.toJson(getData());
        try (ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
             GZIPOutputStream gzipOutputStream = new GZIPOutputStream(byteArrayOutputStream)) {
            IOUtils.write(json, gzipOutputStream, String.valueOf(StandardCharsets.UTF_8));
            gzipOutputStream.finish();
            data= byteArrayOutputStream.toByteArray();
            redissonClient.getBucket(GZIP_REDIS_KEY).set(data,100L, TimeUnit.SECONDS);
        }
    }
    response.setContentType("application/json");
    response.setHeader("content-encoding", "gzip");
    IOUtils.write(data, response.getOutputStream());
}

使用GZIP压缩后的缓存接口使用GZIP压缩后的缓存接口

我们再分析一下以上使用GZIP压缩后的数据传输:

  • 第一次从数据库服务器查出92.8KB的数据传输到WEB服务器中
  • 将11.5KB的GZIP数据从WEB服务器传输到Redis服务器中
  • 后面命中缓存将11.5KB数据从Redis服务器传输到WEB服务器
  • 最后将11.KB数据从WEB服务器返回给用户浏览器

GZIP压缩后的Redis缓存GZIP压缩后的Redis缓存

单次接口请求好像感觉不到这个 GZIP压缩带来的好处,接下来我们压测一下看看会不会有差距。

压力测试

压测可以使用ab (Apache Benchmark) 工具,ab工具是 Apache HTTP server 的一部分,在 macOS使用Homebrew包管理器可以快速安装上ab :

brew install httpd
ab -V
ab -n 100 -c 10 http://localhost/list

其中:

  • -n 100 表示总共请求 100 次。
  • -c 10  表示并发 10 个请求。

未压缩走Redis压缩结果:

ab -n 100000 -c 10 http://localhost/redis

Finished 100000 requests
Document Length:        92476 bytes
Concurrency Level:      10
Time taken for tests:   194.917 seconds
Complete requests:      100000
Failed requests:        0
Total transferred:      9258100000 bytes
HTML transferred:       9247600000 bytes
Requests per second:    513.04 [#/sec] (mean)
Time per request:       19.492 [ms] (mean)
Time per request:       1.949 [ms] (mean, across all concurrent requests)
Transfer rate:          46384.34 [Kbytes/sec] received

Connection Times (ms)
              min  mean[+/-sd] median   max
Connect:        0    8 249.5      0   19514
Processing:     4   12  19.8     10     754
Waiting:        4   11  19.8     10     754
Total:          4   19 250.4     10   19525
Percentage of the requests served within a certain time (ms)
  50%     10
  66%     11
  75%     11
  80%     12
  90%     12
  95%     15
  98%     27
  99%    134
 100%  19525 (longest request)

使用GZIP压缩后走Redis缓存压测结果:

ab -n 100000 -c 10 http://localhost/gzipRedis

Finished 100000 requests
Document Length:        11091 bytes
Concurrency Level:      10
Time taken for tests:   194.927 seconds
Complete requests:      100000
Failed requests:        0
Total transferred:      1122000000 bytes
HTML transferred:       1109100000 bytes
Requests per second:    513.01 [#/sec] (mean)
Time per request:       19.493 [ms] (mean)
Time per request:       1.949 [ms] (mean, across all concurrent requests)
Transfer rate:          5621.09 [Kbytes/sec] received

Connection Times (ms)
              min  mean[+/-sd] median   max
Connect:        0   12 410.4      0   19608
Processing:     3    7  20.0      4     802
Waiting:        3    7  19.9      4     801
Total:          3   19 410.9      4   19613

Percentage of the requests served within a certain time (ms)
  50%      4
  66%      9
  75%      9
  80%      9
  90%     10
  95%     10
  98%     11
  99%     19
 100%  19613 (longest request)

总结

对比使用GZIP压缩我们可以得出以下几点:

  • 测试中10万请求在194S完成,缓存时间是100S,服务器端只做了二次查数据库和GZIP压缩然后存数Redis
  • 两次GZIP和之后的数据传输消耗资源可以忽略不计
  • 未压缩10万请求从Redis传输了8.6GB数据到WEB服务器,又从WEB服务器传输8.6GB给用户浏览器,
  • 压缩10万请求从Redis传输了1GB数据到WEB服务器,又从WEB服务器传输1GB给用户浏览器,节省数据传输15.2GB,节省率88%
  • 未压缩数据传输速度达到45M/S,压缩后5.4M/S,节省带宽88%
  • 如果Redis中大JSON都使用GZIP压缩理论上可以节省Redis内存达到88%
  • 因为直接使用gzip返回,所有解压计算在用户浏览器端完成,不消耗服务器CPU资源

请求10万次数据传输流程请求10万次数据传输流程

综合上所述如里你的Redis缓存中存在大量的大Key,可能先达到瓶颈的不是Redis的读写性能,很可能是你的带宽,此时只需要简单的使用GZIP压缩就能你给不仅节省88%的Redis内存空间还大大减少了数据的传输量和节省了带宽资源,而且还能使用的C端用户的资源来解压,这个ROI是非常高的。


责任编辑:武晓燕 来源: 赵侠客
相关推荐

2017-08-28 15:32:52

内存DDR4DDR3

2010-07-07 18:00:43

SNMP协议

2011-04-25 17:27:38

投影仪

2011-07-25 15:05:20

2017-05-17 15:49:20

限制理论DevOps瓶颈

2019-03-28 09:00:00

AI人工智能医学影像

2015-08-18 12:45:19

云计算

2020-10-14 15:07:25

物联网技术安全

2024-11-22 00:09:15

2010-07-30 13:06:22

NFS端口

2022-11-03 08:56:43

RediskeyBitmap

2021-08-16 10:15:43

智慧城市物联网IOT

2019-07-19 08:15:00

带宽监控工具网络

2018-05-07 13:52:41

区块链比特币加密货币

2024-11-26 08:09:58

2010-01-04 09:39:43

Java EE 6

2013-04-27 17:09:29

安全管理IT技术

2024-11-21 16:47:55

2024-12-02 01:16:53

2011-08-08 12:14:09

点赞
收藏

51CTO技术栈公众号