服务down机了,线程池中的数据如何保证不丢失?

开发 前端
如果此时,线程池在处理的过程中,服务down机了,业务逻辑2的数据会丢失。但此时DB中保存了任务的数据,并且丢失那些任务的状态还是:待执行。

前言

最近有位小伙伴在我的技术群里,问了我一个问题:服务down机了,线程池中如何保证不丢失数据?

这个问题挺有意思的,今天通过这篇文章,拿出来跟大家一起探讨一下。

1 什么是线程池?

之前没有线程池的时候,我们在代码中,创建一个线程有两种方式:

  1. 继承Thread类
  2. 实现Runnable接口

虽说通过这两种方式创建一个线程,非常方便。

但也带来了下面的问题:

  1. 创建和销毁一个线程,都是比较耗时,频繁的创建和销毁线程,非常影响系统的性能。
  2. 无限制的创建线程,会导致内存不足。
  3. 有新任务过来时,必须要先创建好线程才能执行,不能直接复用线程。

为了解决上面的这些问题,Java中引入了:线程池。

它相当于一个存放线程的池子。

使用线程池带来了下面3个好处:

  1. 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  2. 提高响应速度。当任务到达时,可以直接使用已有空闲的线程,不需要的等到线程创建就能立即执行。
  3. 提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性。而如果我们使用线程池,可以对线程进行统一的分配、管理和监控。

2 线程池原理

先看看线程池的构造器:

public ThreadPoolExecutor(
    int corePoolSize,
    int maximumPoolSize,
    long keepAliveTime,
    TimeUnit unit,
    BlockingQueue<Runnable> workQueue,
    ThreadFactory threadFactory,
    RejectedExecutionHandler handler)
  • corePoolSize:核心线程数,线程池维护的最少线程数。
  • maximumPoolSize:最大线程数,线程池允许创建的最大线程数。
  • keepAliveTime:线程存活时间,当线程数超过核心线程数时,多余的空闲线程的存活时间。
  • unit:时间单位。
  • workQueue:任务队列,用于保存等待执行的任务。
  • threadFactory:线程工厂,用于创建新线程。
  • handler:拒绝策略,当任务无法执行时的处理策略。

线程池的核心流程图如下:

图片图片

线程池的工作过程如下:

  1. 线程池初始化:根据corePoolSize初始化核心线程。
  2. 任务提交:当任务提交到线程池时,根据当前线程数判断:
  • 若当前线程数小于corePoolSize,创建新的线程执行任务。
  • 若当前线程数大于或等于corePoolSize,任务被加入workQueue队列。
  1. 任务处理:当有空闲线程时,从workQueue中取出任务执行。
  2. 线程扩展:若队列已满且当前线程数小于maximumPoolSize,创建新的线程处理任务。
  3. 线程回收:当线程空闲时间超过keepAliveTime,多余的线程会被回收,直到线程数不超过corePoolSize。
  4. 拒绝策略:若队列已满且当前线程数达到maximumPoolSize,则根据拒绝策略处理新任务。

说白了在线程池中,多余的任务会被放到workQueue任务队列中。

这个任务队列的数据保存在内存中。

这样就会出现一些问题。

接下来,看看线程池有哪些问题。

3 线程池有哪些问题?

在JDK中为了方便大家创建线程池,专门提供了Executors这个工具类。

3.1 队列过大

Executors.newFixedThreadPool,它可以创建固定线程数量的线程池,任务队列使用的是LinkedBlockingQueue,默认最大容量是Integer.MAX_VALUE。

public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
    return new ThreadPoolExecutor(nThreads, 
                               nThreads,
                                     0L, 
                  TimeUnit.MILLISECONDS,
     new LinkedBlockingQueue<Runnable>(),
                          threadFactory);
}

如果向newFixedThreadPool线程池中提交的任务太多,可能会导致LinkedBlockingQueue非常大,从而出现OOM问题。

3.2 线程太多

Executors.newCachedThreadPool,它可以创建可缓冲的线程池,最大线程数量是Integer.MAX_VALUE,任务队列使用的是SynchronousQueue。

public static ExecutorService newCachedThreadPool() {
  return new ThreadPoolExecutor(0, 
                Integer.MAX_VALUE,
                               60L, 
                  TimeUnit.SECONDS,
    new SynchronousQueue<Runnable>());
}

如果向newCachedThreadPool线程池中提交的任务太多,可能会导致创建大量的线程,也会出现OOM问题。

3.3 数据丢失

如果线程池在执行过程中,服务突然被重启了,可能会导致线程池中的数据丢失。

上面的OOM问题,我们在日常开发中,可以通过自定义线程池的方式解决。

比如创建这样的线程池:

new ThreadPoolExecutor(8, 
                       10,
                       30L, 
     TimeUnit.MILLISECONDS,
    new ArrayBlockingQueue<Runnable>(300),
            threadFactory);

自定义了一个最大线程数量和任务队列都在可控范围内线程池。

这样做基本上不会出现OOM问题。

但线程池的数据丢失问题,光靠自身的功能很难解决。

4 如何保证数据不丢失?

线程池中的数据,是保存到内存中的,一旦遇到服务器重启了,数据就会丢失。

之前的系统流程是这样的:

图片图片

用户请求过来之后,先处理业务逻辑1,它是系统的核心功能。

然后再将任务提交到线程池,由它处理业务逻辑2,它是系统的非核心功能。

但如果线程池在处理的过程中,服务down机了,此时,业务逻辑2的数据就会丢失。

那么,如何保证数据不丢失呢?

答:需要提前做持久化。

我们优化的系统流程如下:

图片图片

用户请求过来之后,先处理业务逻辑1,紧接着向DB中写入一条任务数据,状态是:待执行。

处理业务逻辑1和向DB写任务数据,可以在同一个事务中,方便出现异常时回滚。

然后有一个专门的定时任务,每个一段时间,按添加时间升序,分页查询状态是待执行的任务。

最早的任务,最先被查出来。

然后将查出的任务提交到线程池中,由它处理业务逻辑2。

处理成功之后,修改任务的待执行状态为:已执行。

需要注意的是:业务逻辑2的处理过程,要做幂等性设计,同一个请求允许被执行多次,其结果不会有影响。

如果此时,线程池在处理的过程中,服务down机了,业务逻辑2的数据会丢失。

但此时DB中保存了任务的数据,并且丢失那些任务的状态还是:待执行。

在下一次定时任务周期开始执行时,又会将那些任务数据重新查询出来,重新提交到线程池中。

业务逻辑2丢失的数据,又自动回来了。

如果要考虑失败的情况,还需要在任务表中增加一个失败次数字段。

在定时任务的线程池中执行业务逻辑2失败了,在下定时任务执行时可以自动重试。

但不可能无限制的一直重试下去。

当失败超过了一定的次数,可以将任务状态改成:失败。

这样后续可以人工处理。

责任编辑:武晓燕 来源: 苏三说技术
相关推荐

2024-11-11 07:05:00

Redis哨兵模式主从复制

2024-02-26 08:10:00

Redis数据数据库

2019-03-13 09:27:57

宕机Kafka数据

2023-11-27 13:18:00

Redis数据不丢失

2024-08-06 09:55:25

2021-01-12 08:03:19

Redis数据系统

2024-02-23 14:53:10

Redis持久化

2024-06-18 08:26:22

2021-10-22 08:37:13

消息不丢失rocketmq消息队列

2024-08-29 08:54:35

2023-02-02 08:56:25

线程池线程submit

2024-01-04 08:31:22

k8sController自定义控制器

2021-03-08 10:19:59

MQ消息磁盘

2020-12-31 07:34:04

Redis数据宕机

2023-06-01 08:54:08

RabbitMQ确认机制生产端

2024-10-11 16:57:18

2023-09-13 08:14:57

RocketMQ次数机制

2018-06-25 09:48:00

数据安全云服务

2023-10-23 11:22:06

Redis数据持久化

2023-01-26 02:07:51

HashSet线程安全
点赞
收藏

51CTO技术栈公众号