强化学习先驱、加拿大阿尔伯塔大学CS系教授Rich Sutton曾在2019年写下一篇名为《The Bitter Lesson》的博文,成为AI领域的经典论述之一。
甚至,Rich Sutton在字里行间体现出的直觉已经颇有Scaling Law的意味。
原文地址:https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf
文章简要回顾了AI在象棋、围棋、语音识别和视觉等领域的发展道路,并提出了这样的观点:
我们应该吸取的惨痛教训之一,就是要意识到通用方法的力量。随着可用算力猛增带来计算量的增加,这种方法可以持续扩展。似乎能以这种方式进行任意扩展的两种方法正是搜索(search)和学习(learning)。
然而,这个观点和Scaling Law并不完全一样,我们也不能以此为据,认为小型模型注定无关紧要。
正如Sutton所描述的,扩展这条路上我们有两板斧:学习和搜索。
OpenAI提出的Scaling Law更强调前者。在其他条件不变时,较大的模型表现更好,因为可以从训练集中学习到更多知识和模式。
但我们往往忽略的是后者。搜索方法也可以在推理阶段随算力增长进行平滑的扩展,以生成更多或者更高质量的候选答案。
斯坦福、牛津、DeepMind等机构的学者最近发表的一篇文章就关注到了这一点。
论文地址:https://arxiv.org/abs/2407.21787
随着推理阶段重复采样数量的提升,模型在GSM8K、MATH、MiniF2F-Math、SWE-bench Lite等数学、推理、代码领域的性能(即问题覆盖率)都有显著提升。
甚至,二者之间似乎存在指数线性关系,并可以用指数幂律建模,似乎能说明推理阶段缩放定律的存在。
受到这篇论文的启发,两位工程师开始尝试复现——结果是,用100个小Llama模型进行搜索,即可在Python编程任务中追赶甚至打败GPT-4o。
两位作者用了一个形象的比喻:以前,需要一匹马大小的鸭子才能获得边界能力;但现在,我们可以选择用100只鸭子大小的马(或者更确切地说,是羊驼Llama)。
实验所用的源代码已上传至GitHub,而且复现成本相当低。
https://gist.github.com/charlesfrye/27f25188dbbcfdf20a83c0230020fe05
为了尝试较高性能,作者使用了vLLM库实现批量推理,并将硬件条件扩展到10个A100-40GB GPU,输出速度达到40k token/s。
评估指标和结果
作者选择了上述的Large Language Monkeys论文中未涵盖的基准测试——HumanEval。
这个数据集的好处在于,使用运行测试对生成的代码进行评估,而不需要LLM-as-Judge或人类评估的参与,能更加客观地衡量其正确性。
模型的性能通过pass@k和fail@k两个指标衡量。根据PapersWithCode的报告结果,在零样本推理时,GPT-4o的pass@1成绩为90.2%。
https://paperswithcode.com/sota/code-generation-on-humaneval
使用上述论文提出的方法,加上最少量的prompt微调(未调整其他超参数),Llama 3.1 8B的pass@k分数就有显著提升。
重复采样数k为100时,性能与GPT-4o相当(90.5% vs. 90.2%);k达到1000时,分数为95.1%,明显优于GPT-4o。
如果使用fail@k指标(相当于1-pass@k),再将上图中的两个坐标轴进行对数变换,就可以看到下图所示的曲线,似乎完美符合「缩放定律」。
值得注意的是,这个小实验并不是对论文的严格复现,仅是提取了其中的核心方法。
然而,这些结果更加强调了,使用搜索方法进行推理阶段增强时,较小的模型能以可预测的方式胜过GPT-4o这样的「巨无霸」模型。
「搜索」的未来
搜索方法之所以强大,正是因为它能随着计算量的增加进行「透明」的扩展,还可以将资源消耗从内存转移至计算,实现进一步的资源平衡。
最近AI在数学方面的重大成果,比如DeepMind的AlphaProof和AlphaGeometry取得了IMO银牌的水平,以及得到验证的「忙碌海狸」问题,都离不开其中使用的搜索。
然而,搜索的实现首先需要对结果进行高质量的评估。DeepMind的模型将自然语言表述的数学问题翻译为形式化表述,从而得到Lean这种编译器/验证器的详细监督。
陶哲轩也曾在采访中不断强调,「形式化」对AI在数学领域的应用十分重要,可以使并行程度和自动化程度大大提高。
根据Curry-Howard-Lambek对应关系,对数学证明和代码生成结果而言,使用计算机程序进行自动化识别和评估会相对容易。
但类似的方法可能会在数学和编程以外的领域失效。比如,对于「总结电子邮件」这类开放式的NLP任务,就很难进行有效的搜索。
从这个角度来看,搜索是评估的下游。我们可以粗略地预期,生成模型在特定领域中的性能提升,将和评估、搜索能力成正比。
为达到这个目的,可重复数字环境中的agent似乎是一个有前景的方向。