一、简介
在 Java 的java.util.concurrent包中,除了提供底层锁、并发同步等工具类以外,还提供了一组原子操作类,大多以Atomic开头,他们位于java.util.concurrent.atomic包下。
所谓原子类操作,顾名思义,就是这个操作要么全部执行成功,要么全部执行失败,是保证并发编程安全的重要一环。
相比通过synchronized和lock等方式实现的线程安全同步操作,原子类的实现机制则完全不同。它采用的是通过无锁(lock-free)的方式来实现线程安全(thread-safe)访问,底层原理主要基于CAS操作来实现。
某些业务场景下,通过原子类来操作,既可以实现线程安全的要求,又可以实现高效的并发性能,同时编程方面更加简单。
下面我们一起来看看它的具体玩法!
二、常用原子操作类
在java.util.concurrent.atomic包中,因为原子类众多,如果按照类型进行划分,可以分为五大类,每个类型下的原子类可以用如下图来概括(不同 JDK 版本,可能略有不同,本文主要基于 JDK 1.8 进行采样)。
图片
虽然原子操作类很多,但是大体的用法基本类似,只是针对不同的数据类型进行了单独适配,这些原子类都可以保证多线程下数据的安全性,使用起来也比较简单。
2.1、基本类型
基本类型的原子类,也是最常用的原子操作类,JDK为开发者提供了三个基础类型的原子类,内容如下:
- AtomicBoolean:布尔类型的原子操作类
- AtomicInteger:整数类型的原子操作类
- AtomicLong:长整数类型的原子操作类
以AtomicInteger为例,常用的操作方法如下:
方法 | 描述 |
| 获取当前值 |
| 设置 value 值 |
| 先取得旧值,然后加1,最后返回旧值 |
| 先取得旧值,然后减1,最后返回旧值 |
| 加1,然后返回新值 |
| 减1,然后返回新值 |
| 先取得旧值,然后增加指定值,最后返回旧值 |
| 增加指定值,然后返回新值 |
| 直接使用CAS方式,将【旧值】更新成【新值】,核心方法 |
AtomicInteger的使用方式非常简单,使用示例如下:
AtomicInteger atomicInteger = new AtomicInteger();
// 先获取值,再自增,默认初始值为0
int v1 = atomicInteger.getAndIncrement();
System.out.println("v1:" + v1);
// 获取自增后的ID值
int v2 = atomicInteger.incrementAndGet();
System.out.println("v2:" + v2);
// 获取自减后的ID值
int v3 = atomicInteger.decrementAndGet();
System.out.println("v3:" + v3);
// 使用CAS方式,将就旧值更新成 10
boolean v4 = atomicInteger.compareAndSet(v3,10);
System.out.println("v4:" + v4);
// 获取最新值
int v5 = atomicInteger.get();
System.out.println("v5:" + v5);
输出结果:
v1:0
v2:2
v3:1
v4:true
v5:10
下面我们以对某个变量累加 10000 次为例,采用 10 个线程,每个线程累加 1000 次来实现,对比不同的实现方式执行结果的区别(预期结果值为 10000)。
方式一:线程不安全操作实现
public class Demo1 {
/**
* 初始化一个变量
*/
private static volatile int a = 0;
public static void main(String[] args) throws InterruptedException {
final int threads = 10;
CountDownLatch countDownLatch = new CountDownLatch(threads);
for (int i = 0; i < threads; i++) {
new Thread(new Runnable() {
@Override
public void run() {
for (int j = 0; j < 1000; j++) {
a++;
}
countDownLatch.countDown();
}
}).start();
}
// 阻塞等待10个线程执行完毕
countDownLatch.await();
// 输出结果值
System.out.println("结果值:" + a);
}
}
输出结果:
结果值:9527
从日志上可以很清晰的看到,实际结果值与预期不符,即使变量a加了volatile关键字,也无法保证累加结果的正确性。
针对volatile关键字,在之前的文章中我们有所介绍,它只能保证变量的可见性和程序的有序性,无法保证程序操作的原子性,导致运行结果与预期不符。
方式二:线程同步安全操作实现
public class Demo2 {
/**
* 初始化一个变量
*/
private static int a = 0;
public static void main(String[] args) throws InterruptedException {
final int threads = 10;
CountDownLatch countDownLatch = new CountDownLatch(threads);
for (int i = 0; i < threads; i++) {
new Thread(new Runnable() {
@Override
public void run() {
synchronized (Demo2.class){
for (int j = 0; j < 1000; j++) {
a++;
}
}
countDownLatch.countDown();
}
}).start();
}
// 阻塞等待10个线程执行完毕
countDownLatch.await();
// 输出结果值
System.out.println("结果值:" + a);
}
}
输出结果:
结果值:10000
当多个线程操作同一个变量或者方法的时候,可以在方法上加synchronized关键字,可以同时实现变量的可见性、程序的有序性、操作的原子性,达到运行结果与预期一致的效果。
同时也可以采用Lock锁来实现多线程操作安全的效果,执行结果也会与预期一致。
方式三:原子类操作实现
public class Demo3 {
/**
* 初始化一个原子操作类
*/
private static AtomicInteger a = new AtomicInteger();
public static void main(String[] args) throws InterruptedException {
final int threads = 10;
CountDownLatch countDownLatch = new CountDownLatch(threads);
for (int i = 0; i < threads; i++) {
new Thread(new Runnable() {
@Override
public void run() {
for (int j = 0; j < 1000; j++) {
// 采用原子性操作累加
a.incrementAndGet();
}
countDownLatch.countDown();
}
}).start();
}
// 阻塞等待10个线程执行完毕
countDownLatch.await();
// 输出结果值
System.out.println("结果值:" + a.get());
}
}
输出结果:
结果值:10000
从日志结果上可见,原子操作类也可以实现在多线程环境下执行结果与预期一致的效果,关于底层实现原理,我们等会在后文中进行介绍。
与synchronized和Lock等实现方式相比,原子操作类因为采用无锁的方式实现,因此某些场景下可以带来更高的执行效率。
2.2、对象引用类型
上文提到的基本类型的原子类,只能更新一个变量,如果需要原子性更新多个变量,这个时候可以采用对象引用类型的原子操作类,将多个变量封装到一个对象中,JDK为开发者提供了三个对象引用类型的原子类,内容如下:
- AtomicReference:对象引用类型的原子操作类
- AtomicStampedReference:带有版本号的对象引用类型的原子操作类,可以解决 ABA 问题
- AtomicMarkableReference:带有标记的对象引用类型的原子操作类
以AtomicReference为例,构造一个对象引用,具体用法如下:
public class User {
private String name;
private Integer age;
public User(String name, Integer age) {
this.name = name;
this.age = age;
}
@Override
public String toString() {
return "User{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
}
AtomicReference<User> atomicReference = new AtomicReference<>();
// 设置原始值
User user1 = new User("张三", 20);
atomicReference.set(user1);
// 采用CAS方式,将user1更新成user2
User user2 = new User("李四", 21);
atomicReference.compareAndSet(user1, user2);
System.out.println("更新后的对象:" + atomicReference.get().toString());
输出结果:
更新后的对象:User{name='李四', age=21}
2.3、对象属性类型
在某项场景下,可能你只想原子性更新对象中的某个属性值,此时可以采用对象属性类型的原子操作类,JDK为开发者提供了三个对象属性类型的原子类,内容如下:
- AtomicIntegerFieldUpdater:属性为整数类型的原子操作类
- AtomicLongFieldUpdater:属性为长整数类型的原子操作类
- AtomicReferenceFieldUpdater:属性为对象类型的原子操作类
需要注意的是,这些原子操作类需要满足以下条件才可以使用。
- 1.被操作的字段不能是 static 类型
- 2.被操纵的字段不能是 final 类型
- 3.被操作的字段必须是 volatile 修饰的
- 4.属性必须对于当前的 Updater 所在区域是可见的,简单的说就是尽量使用public修饰字段
以AtomicIntegerFieldUpdater为例,构造一个整数类型的属性引用,具体用法如下:
public class User {
private String name;
/**
* age 字段加上 volatile 关键字,并且改成 public 修饰
*/
public volatile int age;
public User(String name, int age) {
this.name = name;
this.age = age;
}
}
User user = new User("张三", 20);
AtomicIntegerFieldUpdater<User> fieldUpdater = AtomicIntegerFieldUpdater.newUpdater(User.class, "age");
// 将 age 的年龄原子性操作加 1
fieldUpdater.getAndIncrement(user);
System.out.println("更新后的属性值:" + fieldUpdater.get(user));
输出结果:
更新后的属性值:21
2.4、数组类型
数组类型的原子操作类,并不是指对数组本身的原子操作,而是对数组中的元素进行原子性操作,这一点需要特别注意,如果要针对整个数组进行更新,可以采用对象引入类型的原子操作类进行处理。
JDK为开发者提供了三个数组类型的原子类,内容如下:
- AtomicIntegerArray:数组为整数类型的原子操作类
- AtomicLongArray:数组为长整数类型的原子操作类
- AtomicReferenceArray:数组为对象类型的原子操作类
以AtomicIntegerArray为例,具体用法如下:
int[] value = new int[]{0, 3, 5};
AtomicIntegerArray array = new AtomicIntegerArray(value);
// 将下标为[0]的元素,原子性操作加 1
array.getAndIncrement(0);
System.out.println("下标为[0]的元素,更新后的值:" + array.get(0));
输出结果:
下标为[0]的元素,更新后的值:1
2.5、累加器类型
累加器类型的原子操作类,是从 jdk 1.8 开始加入的,专门用来执行数值类型的数据累加操作,性能更好。
它的实现原理与基本数据类型的原子类略有不同,当多线程竞争时采用分段累加的思路来实现目标值,在多线程环境中,它比AtomicLong性能要高出不少,特别是写多的场景。
JDK为开发者提供了四个累加器类型的原子类,内容如下:
- LongAdder:长整数类型的原子累加操作类
- LongAccumulator:LongAdder的功能增强版,它支持自定义的函数操作
- DoubleAdder:浮点数类型的原子累加操作类
- DoubleAccumulator:同样的,也是DoubleAdder的功能增强版,支持自定义的函数操作
以LongAdder为例,具体用法如下:
LongAdder adder = new LongAdder();
// 自增加 1,默认初始值为0
adder.increment();
adder.increment();
adder.increment();
System.out.println("最新值:" + adder.longValue());
输出结果:
最新值:3
三、小结
本文主要围绕AtomicInteger的用法进行一次知识总结,JUC包下的原子操作类非常的多,但是大体用法基本相似,只是针对不同的数据类型做了细分处理。
在实际业务开发中,原子操作类通常用于计数器,累加器等场景,比如编写一个多线程安全的全局唯一 ID 生成器。
public class IdGenerator {
private static AtomicLong atomic = new AtomicLong(0);
public long getNextId() {
return atomic.incrementAndGet();
}
}