半年时间聚合桶数量指定都忘了

开发
本文通过 demo 示例,从发现聚合桶数量丢失,到排查产生丢失的问题,最后通过 size 参数解决聚合桶数量丢失问题的过程。

一、版本

elasticsearch 8.13

二、背景

最近接到一个需求,将 MySQL 中的数据迁移到 Elasticsearch 中,并且相关的业务接口全部切换为使用 Elasticsearch 实现。

其中有个统计的功能,先根据 group 进行分组,然后对每个组内对象的 type 值进行分组统计。

举个例子:对学生进行统计,相当于先按照班级分组,在统计每个班级里面男女生的人数。

我一想切换到 Elasticsearch 中,相当于嵌套子聚合,一个聚合查询就出来结果,半小时搞定这个接口。

三、问题来了

1.初始化数据

创建索引:

PUT zuiyu_index
{
  "settings": {
    "number_of_replicas": 1,
    "number_of_shards": 1
  },
  "mappings": {
    "properties": {
      "group": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "type": {
        "type": "long"
      }
    }
  }
}

插入测试数据:

POST _bulk
{ "index" : { "_index" : "zuiyu_index", "_id" : "1" } }
{ "group" : "1","type":1 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "2" } }
{ "group" : "1","type":2 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "3" } }
{ "group" : "1","type":3 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "4" } }
{ "group" : "2","type":1 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "5" } }
{ "group" : "2","type":1 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "6" } }
{ "group" : "2","type":1 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "7" } }
{ "group" : "3","type":2 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "8" } }
{ "group" : "4","type":1 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "9" } }
{ "group" : "5","type":1 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "10" } }
{ "group" : "6","type":1 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "11" } }
{ "group" : "7","type":1 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "12" } }
{ "group" : "8","type":1 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "13" } }
{ "group" : "9","type":1 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "14" } }
{ "group" : "10","type":1 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "15" } }
{ "group" : "10","type":2 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "16" } }
{ "group" : "11","type":1 ,"sort":1}
{ "index" : { "_index" : "zuiyu_index", "_id" : "17" } }
{ "group" : "11","type":3 ,"sort":1}

像这种简单的一条 sql 就出来结果的业务,我一般都是先写个 sql 语句,然后根据 sql 再写代码。所以这里我就先写了个DSL语句。

2.聚合查询

GET zuiyu_index/_search
{
  "aggregations": {
    "agg_group": {
      "aggregations": {
        "agg_type": {
          "terms": {
            "field": "type"
          }
        }
      },
      "terms": {
        "field": "group.keyword"
      }
    }
  },
  "query": {
    "bool": {
      "must": [
        {
          "terms": {
            "group.keyword": ["1","2","3","4","5","6","7","8","9","10","11"]
          }
        }
      ]
    }
  },
  "size":0
}

同学们可以看一下上面的语句有问题吗,如果你能发现问题,那么这篇文章也希望你能看下去,也许会有意想不到的收获。

提示一下:就像标题所说,可以关心一下聚合桶的数量。

四、发现问题

上述 DSL 语句执行之后,大眼一看 ,结果 OK,是我想要的,那就按这个逻辑直接写 Java 代码。上述 DSL 语句中聚合操作对应的 Java 代码如下:

Aggregation aggType = Aggregation.of(agg -> agg.terms(t -> t.field("type")));
 Aggregation aggGroup = Aggregation.of(agg -> agg.terms(t -> t.field("group"))
                .aggregations("agg_type", aggType));

做接口数据层的迁移,最简单的就是修改完业务代码之后直接对比返回结果,保持返回结果的一致,这样的修改对于前端来说没有影响。

所以,修改完代码之后直接拿接口的返回值与修改之前的版本进行比对,验证业务逻辑是否一致。直接 F12 控制台,找到该接口的返回值,复制,粘贴到对比工具中,进行对比。

此处使用的对比工具是 Beyond Compare 。

通过对比返回结果发现,聚合桶的数量少了一个。

上面的例子中,我们的预期结果是,最外层 group 的分组最少11个,排除 group 不存在的情况。这里 terms 中条件 group 在索引中都已存在。

然后我就赶紧再去执行了一遍上面 DSL 语句,一个一个的验证聚合桶,发现返回结果中竟然没有 group=9 的桶存在。

DSL 返回结果如下:

{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 17,
      "relation": "eq"
    },
    "max_score": null,
    "hits": []
  },
  "aggregations": {
    "agg_group": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 1,
      "buckets": [
        {
          "key": "1",
          "doc_count": 3,
          "agg_type": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": 1,
                "doc_count": 1
              },
              {
                "key": 2,
                "doc_count": 1
              },
              {
                "key": 3,
                "doc_count": 1
              }
            ]
          }
        },
        {
          "key": "2",
          "doc_count": 3,
          "agg_type": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": 1,
                "doc_count": 3
              }
            ]
          }
        },
        {
          "key": "10",
          "doc_count": 2,
          "agg_type": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": 1,
                "doc_count": 1
              },
              {
                "key": 2,
                "doc_count": 1
              }
            ]
          }
        },
        {
          "key": "11",
          "doc_count": 2,
          "agg_type": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": 1,
                "doc_count": 1
              },
              {
                "key": 3,
                "doc_count": 1
              }
            ]
          }
        },
        {
          "key": "3",
          "doc_count": 1,
          "agg_type": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": 2,
                "doc_count": 1
              }
            ]
          }
        },
        {
          "key": "4",
          "doc_count": 1,
          "agg_type": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": 1,
                "doc_count": 1
              }
            ]
          }
        },
        {
          "key": "5",
          "doc_count": 1,
          "agg_type": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": 1,
                "doc_count": 1
              }
            ]
          }
        },
        {
          "key": "6",
          "doc_count": 1,
          "agg_type": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": 1,
                "doc_count": 1
              }
            ]
          }
        },
        {
          "key": "7",
          "doc_count": 1,
          "agg_type": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": 1,
                "doc_count": 1
              }
            ]
          }
        },
        {
          "key": "8",
          "doc_count": 1,
          "agg_type": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": 1,
                "doc_count": 1
              }
            ]
          }
        }
      ]
    }
  }
}

到了这,其实我还没想到是什么原因造成的,然后看了好几遍的聚合语句,都没有发现问题。一度的自我怀疑,聚合不是这样用的吗,嵌套的聚合难道还有花样?

1.查阅官方文档

官方文档肯定是最权威的,所以去官方文档看看吧,是不是可以给自己点灵感,找到解决方案。

首先去的是如下地址:

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html#run-sub-aggs

官方给的代码示例好简单,确实没毛病,对我没啥启发,告辞转下个网页。

还是这个网页,回到页面顶端,有一个 Bucket 字样的地方,点进去。

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket.html

在这个页面,发现可以通过 search.max_buckets 设置请求返回聚合桶的总数,然后我脑海中那丢失的记忆回来了。

想起了在 Elasticsearch 聚合时,聚合桶的返回数量是可以指定的,但是怎么指定,参数是什么,我又忘了。

但是大方向肯定是这个了,我就开始找相关的资料,翻阅官网关于聚合的文档,终于在官方文档的嵌套聚合中找到了相关的说明。

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-composite-aggregation.html#_size

大体意思就是size参数可以控制返回聚合桶的数量,默认 10。

但是这里也没有给出示例,我还是不会用啊。

毕竟咱也是有点 ES 基础的,内心其实已经有了想法,大概知道怎么用了,只是还得需要确认下。

最后想起来之前写过关于聚合的文章,抱着试试看的态度,在回顾一下吧。

2.聚合在Elasticsearch中的使用及示例验证

发文日期,2023年8月2日,真是老了,才半年多的时间都忘了,好了回到主题。

在这篇文档中,发现了 size 参数的使用,在这里终于确认,聚合桶数量需要指定,并且根据自己的查询条件进行设置,或直接设置一个最大值兼容自己所有的聚合请求。

所以修改之后的 DSL 语句如下:

GET zuiyu_index/_search
{
  "aggregations": {
    "agg_group": {
      "aggregations": {
        "agg_type": {
          "terms": {
            "field": "type"
          }
        }
      },
      "terms": {
        "field": "group.keyword",
        "size": 11
      }
    }
  },
  "query": {
    "bool": {
      "must": [
        {
          "terms": {
            "group.keyword": ["1","2","3","4","5","6","7","8","9","10","11"]
          }
        }
      ]
    }
  },
  "size":0
}

相对应的 Java 代码也修改:

Aggregation aggType = Aggregation.of(agg -> agg.terms(t -> t.field("type")));
 Aggregation aggGroup = Aggregation.of(agg -> agg.terms(t -> t.field("group").size(groupList.size())
                .aggregations("agg_type", aggType));

groupList.size() 为 terms 查询条件值的数量。

五、search.max_buckets

可以通过 _cluster 的 API 设置此参数。

PUT _cluster/settings
{
  "transient": {
    "search.max_buckets":100
  }
}

此处使用的是 transient ,还可以使用 persistent,他俩的区别就是transient 的配置会在集群重启之后失效,persistent会持久化保存。

其中这个参数在之前的索引分片分配策略一文中讲过了,还没看过的可以跳过去看一下,链接我放下面。

Elasticsearch Index Shard Allocation 索引分片分配策略

六、总结

本文通过 demo 示例,从发现聚合桶数量丢失,到排查产生丢失的问题,最后通过 size 参数解决聚合桶数量丢失问题的过程。

意外收获的是一次请求返回聚合桶数量的总数也是可以通过 search.max_buckets设置的。

日常的积累固然重要,熟悉官方文档中相关 API 的位置也是必不可少的。

责任编辑:赵宁宁 来源: 醉鱼Java
相关推荐

2017-11-02 10:15:12

时间 1元

2020-11-18 17:37:05

C语言Java程序员

2013-05-21 10:19:22

2015-09-24 10:29:50

PC市场Windows 10

2021-12-16 12:27:15

Log4j漏洞网络安全

2020-05-22 13:27:49

5G网络张云勇运营商

2020-09-02 09:08:28

5G运营商5G基站

2012-06-28 09:32:15

Windows RTMetro

2012-12-28 16:23:50

2015-01-06 09:59:03

2023-11-26 18:13:07

iOS 18苹果

2013-09-29 09:43:40

戴尔CEO私有化

2015-08-12 13:20:48

2g

2012-10-08 10:14:17

Instagram

2016-08-08 17:37:23

大数据搜索

2024-07-31 16:21:08

2013-09-04 11:31:45

2017-02-17 11:40:35

服务器OS

2020-12-08 09:18:14

6G通信技术华为

2020-12-20 11:21:16

微软密码管理安全风险
点赞
收藏

51CTO技术栈公众号