CVPR'24:文生图提示词自动优化,还发现三个小窍门,人大度小满等机构出品

人工智能 新闻
来自中国人大、度小满等团队提出了一种全新的自动文本提示优化方法——动态提示自动编辑(Prompt Auto-Editing,PAE)。

文生图也有自己的prompt优化工具了。

我们都知道,大模型输出的质量,很大程度上依赖于输入的prompt。尤其在文生图领域,对于prompt格外敏感。

来自中国人大、度小满等团队提出了一种全新的自动文本提示优化方法——动态提示自动编辑(Prompt Auto-Editing,PAE)。

图片

它考虑了文本提示中的每个词在扩散生成过程的权重和注入时间步。

最终在多个公开数据集上进行了实验验证,包括Lexica.art、DiffusionDB和COCO。PAE方法不仅提高了图像的美学质量,还确保了图像与文本描述的语义一致性。

与传统方法相比,PAE在控制图像生成过程中的精确性和灵活性方面表现更优。

图片

关键在动态prompt

当前,尽管用户可以通过手动修改提示来尝试生成更优质的图像,但这一过程不仅效率低下,而且难以精确控制。

为了提高效率并优化生成结果,团队研发了PAE方法,这一方法的关键在于采用了动态提示(Dynamic Prompts)。

首先是为用户输入的简短提示词扩充出更多修饰词,其次是通过动态调整新添加的修饰词的权重和注入时间步,自动细化优化文本提示,从而更精准地控制图像生成过程。

图片

1、Dynamic Prompt的定义

具体来说,团队定义了一种新的提示格式,用以丰富初始提示的信息,命名为动态精细控制提示(DF-Prompt)

文本prompt中的每个token会被拓展成一个三元组,在原有基础上新添加了用来添加权重的浮点数,以及文本生效的时间步范围。

DF-Prompt是原本的提示词和修饰词的结合。DF-Prompt 的本质在于促进更精确和控制的生成。为了便于演示和代码实现,我们还定义了一个纯文本格式:[token:range:weight]

以portrait of a beautiful forest goddess, beauty, very aesthetic, masterpiece为例,其中beauty拓展成三元组可以表示为[beauty:0.5→0:0.75],其权重为0.75,生效的时间步范围为后50%的降噪步骤。

2、训练数据收集

DiffusionDB数据集收集了用户生成图像时使用的prompt,其中包含大量的修饰词、风格描述等,可以帮助我们训练提示词拓展与精细优化的自动化模型。

在DiffusionDB等数据集中,一般逗号之前的文本包含主要信息,描述图像的主题,而逗号之后的文本被视为次要文本,提供补充后缀作为修饰语。

比如“a red horse on the yellow grass, anime style”,主要信息为“a red horse on the yellow grass”,次要文本为“anime style”。

我们把逗号之前的文本作为短提示,剩余的文本(次要文本)形成了修饰词集合,以此来构建训练数据中的输入提示词和目标提示词。

最后,我们定义一个置信分数,利用美学指标和CLIP分数来筛选训练数据,确保用于训练的提示词能够引导生成高美学评分、高图文对齐度的图像。

3、训练阶段

如图所示,使用收集好的训练数据进行两阶段训练。

图片

阶段一:监督式微调阶段。

在收集好的数据集上对语言模型进行微调,以生成优化后的文本提示。每条训练数据都包含了短提示词文本和修饰词集合,这里的优化目标就是让语言模型根据短提示词扩展出更多修饰词。在这种方式中,训练好的模型能够处理简短的提示,并预测适当的修饰词,从而提升生成图像的美学质量。

阶段二:强化学习阶段。

使用强化学习优化文本提示,通过多维度奖励系统来指导这一过程,考虑到美学评分、语义一致性和用户偏好。这一阶段的主要目的是为每一个修饰词添加权重和作用时间步,实现精细化的控制。我们使用 PPO 算法,在训练集上最大化期望累积奖励。奖励函数是在生成的图像上计算的,考虑了包括CLIP分数、PickScore、美学评分等指标。

通过观察自动学习到的权重分布、时间步范围统计信息,我们还有了一些有趣的发现:

图片

  • 使用艺术家名称和纹理修饰词:通过引入艺术家的名字和纹理修饰词,可以显著提高生成图像的艺术质量,并保持语义的准确性。
  • 在扩散过程的后半阶段引入风格元素:在图像生成的扩散过程后半段引入风格化元素,可以更好地融合这些元素,从而提高整体的视觉和艺术效果。
  • 降低复杂术语的权重:对于复杂的术语,适当降低其权重可以确保图像生成既平衡又具吸引力,避免过分强调某些元素,从而影响图像的整体美观。

arxiv链接: https://arxiv.org/abs/2404.04095
代码链接: https://github.com/Mowenyii/PAE

责任编辑:张燕妮 来源: 量子位
相关推荐

2024-11-05 14:25:00

AI模型

2009-06-23 13:32:48

JavaScript初窍门

2018-09-11 08:40:00

前端JavaScriptt性能优化

2010-09-26 14:57:40

控制IT预算

2023-11-28 15:21:00

AI模型

2009-10-09 13:33:00

自学CCNACCNA

2020-11-16 09:05:08

Docker架构容器

2013-07-29 10:39:39

App窍门

2020-07-19 08:11:54

Python代码开发

2022-08-20 19:12:22

编程窍门

2018-11-09 08:12:53

网络带宽传输

2010-05-26 10:10:53

openssh

2020-09-13 09:14:35

PythonJSON开发

2013-07-05 16:08:40

开发效率

2010-09-29 09:01:10

2009-07-14 10:21:19

Eclipse 3.5

2012-05-16 11:52:23

虚拟化

2024-10-10 15:24:50

JSONPython

2023-07-27 13:22:40

AI模型

2010-10-14 13:31:13

无线IP冲突
点赞
收藏

51CTO技术栈公众号