你要的 AI Agent 工具都在这里

人工智能
本文主要聊了AI Agent的工具规范,以及常用工具。AI Agent只有借助工具才能发挥威力。

只有让LLM(大模型)学会使用工具,才能做出一系列实用的AI Agent,才能发挥出LLM真正的实力。本篇,我们让AI Agent使用更多的工具,比如:外部搜索、分析CSV、文生图、执行代码等。

一、使用工具的必要性

LLM(大模型)如果没有使用工具的能力,那就相当于一个有着聪明大脑 但四肢僵硬的 渐冻人,什么事儿也做不了。人类之所以区别于动物,正是因为学会了使用工具。因此,赋予LLM使用工具的能力至关重要。

我们需要 LLM去帮助执行各种任务。而Tool(工具)就是LLM 在执行任务过程中,能够调用的外部能力。比如:需要检索外部资料时,可以调用检索工具;需要执行一段代码时,可以调用自定义函数去执行。

二、LangChain的Tool规范

所有的工具肯定要遵守一套规范,才能让LLM随意调用。为此,LangChain 抽象出一个Tool 层,只要是遵守这套规范的函数就是 Tool 对象,就可以被 LLM调用。

1. Tool规范

Tool的规范也简单,只要有三个属性就行:name、description和function。

  • name:工具的名称。
  • description:对工具的功能描述,后续这个描述文本会添加到Prompt(提示词)中,LLM 将根据description来决定是否调用该工具。
  • function:此工具实际运行的函数。

只要遵守这个规范就行,使用形式可以有多种,下文的实践代码会介绍到。

2. Agent使用工具的流程

让AI Agent使用工具,需要定义Agent和AgentExecutor。AgentExecutor维护了Tool.name到Tool的Map 结构。

LLM根据Prompt(包含了Tool的描述) 和  用户的问题,判断是否需要调用工具,确定某个工具后,在根据Tool的名称 和 调用参数,到映射Map 中获找Tool实例,找到之后调用Tool实例的function。

三、如何使用各种Tool

自定义Tool只需要遵守以上规范就可以,下面以几个常用的工具做示例。

下文有些工具用到了toolkits。toolkits是LangChain提供的工具包,旨在简化使用工具的成本,toolkits里提供了丰富的工具,还在不断叠加,大部分的工具都可以在里面找到。

1. 外部搜索

使用外部搜索工具。本文使用的是serpapi,serpapi集成了Google、百度等多家搜索引擎,通过api的形式调用,非常方便。

官网地址:https://serpapi.com/。可以自行注册,有一些免费额度。外部搜索工具定义如下:

# 1. 使用@tool装饰器,定义搜索工具
@tool
def search(query: str) -> str:
    """只有在需要了解实时信息 或 不知道的事情的时候 才会使用这个工具,需要传入要搜索的内容。"""
    serp = SerpAPIWrapper()
    result = serp.run(query)
    return result

2. 文生图

文生图工具是使用LangChain社区提供的DallEAPIWrapper类,本文使用OpenAI的图片生成模型Dall-E-3,具体代码如下:

# 2. 使用Tool工具类,定义图片生成工具
dalle_image_generator = Tool(
    name="基于OpenAI Dall-E-3的图片生成器",
    func=DallEAPIWrapper(model="dall-e-3").run,
    description="OpenAI DALL-E API 的包装器。当你需要根据 描述的文本 生成图像时 使用此工具,需要传入 对于图像的描述。",
)

这里的DallEAPIWrapper(model="dall-e-3").run方法就是个函数,实际是去调用了OpenAI的接口。

3. 代码执行器

代码执行器工具,可以执行代码 或者 根据自然语言生成代码。主要使用LangChain提供的PythonREPLTool 和 LangChain提供的toolkits。

比如create_python_agent就简化了创建Python解释器工具的过程。代码如下:

# 3. 使用toolkit,定义执行Python代码工具
python_agent_executor = create_python_agent(
    llm=model,
    tool=PythonREPLTool(),
    verbose=True,
    agent_executor_kwargs={"handle_parsing_errors": True},
)

4. 分析CSV

CSV工具,用来分析csv文件。依旧是使用toolkits工具包里的create_csv_agent函数快出创建工具。代码如下:

# 4. 使用toolkit,定义分析CSV文件工具
csv_agent_executor = create_csv_agent(
    llm=model,
    path="course_price.csv",
    verbose=True,
    agent_executor_kwargs={"handle_parsing_errors": True},
    allow_dangerous_code=True,
)

5. 完整代码

上面介绍了AI Agent的常用工具,定义好工具之后,在把工具放入到工具集中,最后在定义Agent 和 AgentExecutor就算完成了。短短几十行代码,就可以让LLM使用这么多工具了。

完整代码如下:

import os
from langchain import hub
from langchain_openai import ChatOpenAI
from langchain.agents import create_structured_chat_agent, AgentExecutor, Tool
from langchain.tools import BaseTool, StructuredTool, tool
from langchain_experimental.agents.agent_toolkits import (
    create_python_agent,
    create_csv_agent,
)
from langchain_community.utilities import SerpAPIWrapper
from langchain_experimental.tools import PythonREPLTool
from langchain_community.utilities.dalle_image_generator import DallEAPIWrapper

# 需要先安装serpapi, pip install serpapi, 还需要到 https://serpapi.com/ 去注册账号

# SERPAPI_API_KEY 和 OPENAI 相关密钥,注册到环境变量
os.environ["SERPAPI_API_KEY"] = (
    "9dd2b2ee429ed996c75c1daf7412df16336axxxxxxxxxxxxxxx"
)
os.environ["OPENAI_API_KEY"] = "sk-a3rrW46OOxLBv9hdfQPBKFZtY7xxxxxxxxxxxxxxxx"
os.environ["OPENAI_API_BASE"] = "https://api.302.ai/v1"

model = ChatOpenAI(model_name="gpt-3.5-turbo")


# 基于reAct机制的Prompt模板
prompt = hub.pull("hwchase17/structured-chat-agent")



# 各种方式定义工具

# 1. 使用@tool装饰器,定义搜索工具
@tool
def search(query: str) -> str:
    """只有在需要了解实时信息 或 不知道的事情的时候 才会使用这个工具,需要传入要搜索的内容。"""
    serp = SerpAPIWrapper()
    result = serp.run(query)
    return result


# 2. 使用Tool工具类,定义图片生成工具
dalle_image_generator = Tool(
    name="基于OpenAI Dall-E-3的图片生成器",
    func=DallEAPIWrapper(model="dall-e-3").run,
    description="OpenAI DALL-E API 的包装器。当你需要根据 描述的文本 生成图像时 使用此工具,需要传入 对于图像的描述。",
)

# 3. 使用toolkit,定义执行Python代码工具
python_agent_executor = create_python_agent(
    llm=model,
    tool=PythonREPLTool(),
    verbose=True,
    agent_executor_kwargs={"handle_parsing_errors": True},
)

# 4. 使用toolkit,定义分析CSV文件工具
csv_agent_executor = create_csv_agent(
    llm=model,
    path="course_price.csv",
    verbose=True,
    agent_executor_kwargs={"handle_parsing_errors": True},
    allow_dangerous_code=True,
)

# 定义工具集合
tool_list = [
    search,
    dalle_image_generator,
    Tool(
        name="Python代码工具",
        description="""
        当你需要借助Python解释器时,使用这个工具。
        比如当你需要执行python代码时,
        或者,当你想根据自然语言的描述生成对应的代码时,让它生成Python代码,并返回代码执行的结果。
        """,
        func=python_agent_executor.invoke,
    ),
    Tool(
        name="CSV分析工具",
        description="""
        当你需要回答有关course_price.csv文件的问题时,使用这个工具。
        它接受完整的问题作为输入,在使用Pandas库计算后,返回答案。
        """,
        func=csv_agent_executor.invoke,
    ),
]


# 将工具丢给Agent
agent = create_structured_chat_agent(
    llm=model,
    tools=tool_list,
    prompt=prompt
)

# 定义AgentExecutor
agent_executor = AgentExecutor.from_agent_and_tools(
    agent=agent, 
    tools=tool_list, 
    verbose=True, # 打印详细的 选择工具的过程 和 reAct的分析过程
    handle_parsing_errors=True
)



# 不会使用工具
agent_executor.invoke({"input": "你是谁?"})

# 使用查询工具
# agent_executor.invoke({"input": "南京今天的温度是多少摄氏度?现在外面下雨吗?"})

# 使用Python代码工具
# agent_executor.invoke(
#     {
#         "input": """
#         帮我执行```号里的python代码,
        
#         ```python
            
#             def add(a,b):
#                 return a+b
            
#             print("hello world : ", add(100,200))
#         ```
#         """
#     }
# )

# 使用图片生成工具
# agent_executor.invoke(
#     {
#         "input": "帮我生成一副图片,图片描述如下:一个非常忙碌的中国高中生在准备中国的高考,夜已经很深了,旁边他的妈妈一边看书一边在陪伴他,窗外是模糊的霓虹灯。"
#     }
# )

# 使用CSV分析工具
# agent_executor.invoke({"input": "course_price数据集里,一共有哪几个城市?用中文回答"})

一起看下使用工具后,reAct的整个过程。

以上代码经过完整调试,更换下openai和serpapi的密钥即可直接运行。

责任编辑:赵宁宁 来源: 程序员半支烟
相关推荐

2017-10-24 14:57:58

AI人工智能机器学习

2021-12-09 08:16:40

JVM参数系统

2018-11-25 20:41:03

2020-06-02 07:00:00

会话安全黑客攻击

2024-07-08 10:18:26

2017-08-29 11:21:03

微软

2018-04-26 16:15:02

数据库MySQLMySQL 8.0

2018-03-19 14:43:28

2021-07-01 09:00:00

安全数字化转型渗透

2021-02-01 08:39:26

JTAG接口Jlink

2021-05-17 07:04:07

动态代理面试

2020-12-08 11:08:55

时间复杂度软件

2021-07-19 08:33:56

时间复杂度大O

2019-11-04 09:07:48

DevOps互联网IT

2020-04-03 15:09:54

iPhone SE苹果手机

2023-09-11 08:51:23

LinkedList双向链表线程

2021-10-06 16:21:32

类型对象Typescript

2021-06-17 13:40:47

区块链比特币公有链

2023-12-11 21:59:01

时序分析深度学习自回归模型

2017-12-26 15:24:18

智慧停车大数据停车场
点赞
收藏

51CTO技术栈公众号