有没有并发编程经验,一问这个类便知!

开发 前端
本文,主要结合图例介绍了ThreadLocal有关内存泄露方面的知识,包括:ThreadLocal的内部结构,不会出现内存泄露的场景,会出现内存泄露的场景,内存泄露的问题分析以及如何避免内存泄露。

ThreadLocal能够在线程本地存储对应的变量,从而有效的避免线程安全问题。但是使用ThreadLocal时,稍微不注意就有可能造成内存泄露的问题。

那么ThreadLocal在哪些场景下会出现内存泄露?哪些场景下不会出现内存泄露?出现内存泄露的根本原因又是什么呢?如何真正避免内存泄露?

接下来,我们就用大量的图解来分析ThreadLocal内存泄露的四个核心问题:哪些场景不会内存泄露、哪些场景会内存泄露、内存泄露的根本原因是什么、以及如何真正 避免内存泄露。

一、ThreadLocal内部结构

为了更好的说明ThreadLocal内存泄露的场景,以及具体的原因,先来了解下ThreadLocal的内部结构,如图1所示。

图片图片

可以看到,ThreadLocal对象是存储在每个Thread线程内部的ThreadLocalMap中的,并且在ThreadLocalMap中有一个Entry数组,Entry数组中的每一个元素都是一个Entry对象。

每个Entry对象中存储着一个ThreadLocal对象与其对应的value值,每个Entry对象在Entry数组中的位置是通过ThreadLocal对象的threadLocalHashCode计算出来的,以此来快速定位Entry对象在Entry数组中的位置。

所以,在Thread中,可以存储多个ThreadLocal对象。

二、不会出现内存泄露的场景

了解完ThreadLocal的内部存储结构后,我们先来思考下哪些场景下ThreadLocal不会发生内存泄露,假设我们单独开启一个线程,并且将变量存储到ThreadLocal中,如图2所示。

图片图片

可以看到,Thread线程在正常执行的情况下,会引用ThreadLocalMap的实例对象,只要Thread线程一直在执行任务,这种引用关系就一直存在。

当Thread线程执行任务结束退出时,Thread线程与ThreadLocalMap实例对象之间的引用关系就不存在了,如图3所示。

图片图片

Thread线程执行完任务退出后,线程里持有的ThreadLocalMap对象也就失去了强引用,此时ThreadLocalMap对象就会被GC自动回收,而ThreadLocalMap中包含的ThreadLocal对象也会被GC回收掉,如图4所示。

图片图片

可以看出,如果只是通过Thread类或者Thread类的子类来创建线程执行任务,随着对应线程的任务执行完毕,线程退出,Thread线程引用的ThreadLocal也会被GC回收掉,此时就不会出现内存泄露的问题。

三、会出现内存泄露的场景

在实际项目中,如果为每个任务的执行都开启一个线程的话,是非常耗费系统资源的,所以,在实际项目中,我们很少直接使用Thread类来创建线程,而是使用线程池来执行对应的任务。

如果是在线程池场景下,线程与ThreadLocalMap之间的引用关系又是怎样的呢?这里,我们先来看一张图,如图5所示。

图片图片

可以看到,线程池中会有多个线程执行任务,如果是通过ThreadLocal存储数据的话,每个线程都会引用一个ThreadLocalMap对象。

另外,线程池中的核心线程在执行完任务后,是不会退出的,可以循环使用,说明线程池中的每个核心线程和ThreadLocalMap之间一直是强引用关系,核心线程对应的ThreadLocal是不会自动被GC回收的,会存在内存泄露的风险。

四、内存泄露问题分析

这里,我们对在线程池中使用ThreadLocal存在内存泄露问题的原因进行分析,首先,将ThreadLocalMap中的Entry数组展开,如图6所示。

图片图片

可以看到,ThreadLocalMap中包含一个Entry数组,而Entry数组中的每一个元素就是Entry对象,Entry对象中存储的Key就是ThreadLocal对象,而value就是要存储的数据。

其中,Entry对象中的Key属于弱引用,这点我们可以从ThreadLocalMap类中的内部类Entry的定义可以看出。Entry类的源码详见:java.lang.ThreadLocal.ThreadLocalMap.Entry。

static class Entry extends WeakReference<ThreadLocal<?>> {
    /** The value associated with this ThreadLocal. */
    Object value;

    Entry(ThreadLocal<?> k, Object v) {
        super(k);
        value = v;
    }
}

可以看到,Entry类继承了WeakReference类,WeakReference类的泛型是ThreadLocal,,说明ThreadLocalMap中的Entry数组对Entry对象的Key就是弱引用。

所以,Entry对象中的Key可以被GC自动回收。当Entry对象中的Key被GC自动回收后如图7所示。

图片图片

当Entry对象中的Key被GC自动回收后,对应的ThreadLocal被GC回收掉了,变成了null,但是ThreadLocal对应的value值依然被Entry引用,不能被GC自动回收,如图8所示。

图片图片

此时,我们可以看到,Entry对象中的Key,也就是ThreadLocal对象可以被GC自动回收,但是对应的value还在被引用,所以,value是不能被GC自动回收的,这种情况下就会存在内存泄露的风险。

我们再来总结下,在线程池中使用ThreadLocal保存数据存在内存泄露风险的原因:线程池中的核心线程会被循环使用,每个线程中对应的ThreadLocalMap会被线程强引用。

所以,每个线程对应的ThreadLocalMap不能被GC自动回收。而ThreadLocalMap中包含一个Entry数组,Entry数组中含有多个Key为ThreadLocal,value为存储的数据的Entry对象。

虽然Entry对象中的Key是弱引用,能够被GC自动回收,但是value却是强引用,不能被GC自动回收,所以,在线程池中使用ThreadLocal会存在内存泄露的风险。

五、如何避免内存泄露

在线程池中使用ThreadLocal如何避免内存泄露呢?ThreadLocal提供相应的解决方法了吗?这里,我们就从ThreadLocal的源码中看看ThreadLocal是否提供了对应的解决方案。

在ThreadLocal中,提供了一个remove()方法,源码详见:java.lang.ThreadLocal#remove。

public void remove() {
    ThreadLocalMap m = getMap(Thread.currentThread());
    if (m != null)
        m.remove(this);
}

可以看到,在remove()方法中,首先根据当前线程获取ThreadLocalMap类型的m对象,不为空,则直接调用m对象的有参remove()方法移除value的值。

有参remove()方法的源码详见:java.lang.ThreadLocal.ThreadLocalMap#remove。

private void remove(ThreadLocal<?> key) {
    Entry[] tab = table;
    int len = tab.length;
    int i = key.threadLocalHashCode & (len-1);
    for (Entry e = tab[i];
         e != null;
         e = tab[i = nextIndex(i, len)]) {
        if (e.get() == key) {
            e.clear();
            expungeStaleEntry(i);
            return;
        }
    }
}

可以看到,在有参remove()方法中,会通过threadLocalHashCode计算出Entry对象在Entry数组中的位置,并获取出对应的Entry对象。

如果Entry对象不为空,并且Entry对象中的Key等于传入的ThreadLocal对象,则清除对应的Key,并且调用expungeStaleEntry()方法。

接下来,我们再分析下expungeStaleEntry()方法,源码详见:java.lang.ThreadLocal.ThreadLocalMap#expungeStaleEntry。

private int expungeStaleEntry(int staleSlot) {
    Entry[] tab = table;
    int len = tab.length;

    // expunge entry at staleSlot
    tab[staleSlot].value = null;
    tab[staleSlot] = null;
    size--;

    // Rehash until we encounter null
    Entry e;
    int i;
    for (i = nextIndex(staleSlot, len);
         (e = tab[i]) != null;
         i = nextIndex(i, len)) {
        ThreadLocal<?> k = e.get();
        if (k == null) {
            e.value = null;
            tab[i] = null;
            size--;
        } else {
            int h = k.threadLocalHashCode & (len - 1);
            if (h != i) {
                tab[i] = null;

                // Unlike Knuth 6.4 Algorithm R, we must scan until
                // null because multiple entries could have been stale.
                while (tab[h] != null)
                    h = nextIndex(h, len);
                tab[h] = e;
            }
        }
    }
    return i;
}

可以看到,在expungeStaleEntry()方法中,会将ThreadLocal为null对应的value设置为null,同时会把对应的Entry对象也设置为null,并且会将所有ThreadLocal对应的value为null的Entry对象设置为null。

这样就去除了强引用,便于后续的GC进行自动垃圾回收,也就避免了内存泄露的问题。调用ThreadLocal的remove()方法后的示意图如图9所示。

图片图片

注意:在ThreadLocal中,不仅仅是remove()方法会调用expungeStaleEntry()方法,在set()方法和get()方法中也可能会调用expungeStaleEntry()方法来清理数据。

还有一点需要注意的是,ThreadLocal虽然提供了避免内存泄露的方法,但是ThreadLocal不会主动去执行这些方法,需要我们在使用完ThreadLocal对象中保存的数据后,在finally{}代码块中调用ThreadLocal的remove()方法,加快GC自动垃圾回收,避免内存泄露。

六、总结

本文,主要结合图例介绍了ThreadLocal有关内存泄露方面的知识,包括:ThreadLocal的内部结构,不会出现内存泄露的场景,会出现内存泄露的场景,内存泄露的问题分析以及如何避免内存泄露。

责任编辑:武晓燕 来源: 冰河技术
相关推荐

2024-04-24 08:35:52

性能调优APP

2021-01-30 11:09:05

技术Java面试

2023-01-03 18:06:42

高并发架构

2015-04-09 13:32:16

编程编程前途

2022-07-08 14:14:04

并发编程异步编程

2020-01-14 11:17:33

Go并发Linux

2023-07-04 13:36:00

同步工具类Phaser

2011-06-22 14:38:14

JAVA

2024-05-29 08:49:45

2021-10-20 06:47:50

Elasticsear场景引擎

2021-04-18 07:09:50

工具类异步编程

2022-10-12 07:53:46

并发编程同步工具

2024-01-22 07:10:00

AI视频

2009-11-27 08:59:18

Windows 7系统升级

2016-12-20 18:54:17

2023-06-30 08:27:20

2023-01-26 02:16:17

2013-05-14 09:22:56

Intel密码安全

2024-01-15 07:14:37

kubernetesk8sLTS

2023-07-05 08:18:54

Atomic类乐观锁悲观锁
点赞
收藏

51CTO技术栈公众号