源码下载地址
https://gitee.com/Shadows1946397262/brunhild_-harmony-os/tree/master/Brunhild_HarmonyOS/North_Samples/Image_Recognition
开发环境要求
- DevEco Studio版本:DevEco Studio 3.1 Release
- HarmonyOS SDK版本:API version 9
工程要求
- API9
- Stage模型
正文
最近邻分类器简介
下面是关于最近邻分类器的一个简单例子:
假设在传送带上有两种鱼,分别是鲈鱼(seabass)和鲑鱼(salmon)。现在我们需要用光学传感器对传送带上的鱼按品种进行分类,因此需要设计一个分类器,不妨设计一个最近邻分类器。假如我们只考虑鱼的两个特征——宽度和鱼身的亮度,现在我们选取十条鲈鱼和十条鲑鱼进行特征提取,并建立一个平面直角坐标系(y轴用于表示宽度特征的数值,x轴用于表示亮度特征的数值,这样就构成了一个二维特征空间),再将每条鱼的由其宽度值和亮度值确定的坐标在图中显示出来。
图中,红色点代表鲑鱼样本的特征向量,蓝色点代表鲈鱼样本的特征向量,它们都属于被训练的数据。当检测设备获取了某条品种未知的鱼的亮度特征和宽度特征时,最近邻分类器所要做的是:先将此品种未知的鱼的亮度值和宽度值表示成特征空间上的向量P,然后计算向量P与每个已训练样本向量的距离。其中,距离采用欧式范数,在二维空间中计算公式为:
由于先前已训练了20项数据,所以我们可以获取20项距离数据,将它们表示为d1, d2, ... ,d20。接着,分类器通过逐项比较获取最小距离di(i∈[1,20]∩N),这意味着第i个已训练样本是未知品种的鱼的最近邻。因此,当第i个已训练样本属于鲈鱼品种时,上述品种未知的鱼将被分类为鲈鱼,否则分类为鲑鱼。
基于最近邻分类器的图像识别算法
找出被测样本的最近邻后,我们便可以凭借此最近邻进行图片分类。
代码结构
图片解码流程
在本案例中,不论是用于训练分类器的图片还是待检测的图片,都需要提前放入Demo
的rawfile目录下的。如果要获取某个图像资源,我们只需要知道此图像的名称(字符串数据),然后通过资源管理者模块resourceManager即可取得。如下给出以获取rawfile目录下名为'p1.png',大小为100px乘100px的图片资源为例,需要编写的相关操作语句。
获取resourceManager:
获取rawfile文件夹下p1.png的ArrayBuffer:
创建ImageSource实例:
创建PixelMap实例:
因为我们需要做图像处理,所以还需要创建一个ArrayBuffer实例(buffer对象),并读取PixelMap实例的数据至buffer中。这样以后,buffer就是一个储存了p1.png图像数据的BGRA_8888格式的数组(也可以称之为向量)了。
由于buffer是BGRA_8888格式的数组,所以buffer中第i,i+1,i+2, i+3(i∈[0,dim/4-1])分别代表某个像素点蓝色分量(B),绿色分量(G),红色分量(R)和透明度分量(A)。因为本案例的图像识别是在灰度图的基础上进行的,所以我们还需要将BGRA_8888格式的数组转化为灰度值数组。
RGB图转灰度图并不难,只需要将每个像素点的蓝色,绿色和红色分量加权求和,就可以得到每个像素点的灰度值。其中,灰度值 = (红色通道值 * 0.299) + (绿色通道值 * 0.587) + (蓝色通道值 * 0.114)。这里的加权系数是根据人眼对不同颜色敏感度的差异来确定的。
关键代码
XL_Image_NNC.ts
同往期一样,笔者青睐于将新开发的功能集成到一个ts文件里并导出,以方便管理与维护。在本模块中,功能被集成在类XL_Image_NNC中,其中,train方法用于为分类器训练数据(虽然不涉及迭代的过程,姑且将其称为"训练"吧),identify方法则是基于已训练的数据进行图像分类。