Hello folks,我是 Luga,今天我们来聊一下人工智能(AI)生态领域相关的技术 - LLM -常见的本地运行 LLM 方法。
众所周知,如今使用 ChatGPT 等大型模型工具变得异常简单,只需通过浏览器在线访问即可。然而,需要注意的是,这种方式可能对我们的隐私和数据造成一些潜在影响,这一点需要格外小心。像主流的 OpenAI 等平台会存储我们所构建的提示、响应以及其他元数据,以便重新训练模型。虽然对于某些人来说这并不构成问题,但注重隐私的人往往更倾向于在本地使用这些模型,以确保在交互过程中没有任何外部跟踪的情况下保护隐私。
在本文中,我们将探讨常见的三种在本地使用 LLM 的方法。大多数软件都与各种主要操作系统兼容,并且可以轻松下载和安装,以供大家直接上手。
Ollama
作为一个开源平台,Ollama 使我们能够在本地计算机上直接运行 Llama 3、Mistral 和 Gemma 等大型语言模型(LLM)。这意味着我们可以充分利用这些人工智能模型的强大功能,而无需依赖基于云的服务。通过使用 Ollama,我们可以在本地进行各种任务,获得高效而便捷的体验。
不论是自然语言处理、文本生成还是其他应用领域,我们都可以在掌握自己的数据和隐私的同时,充分发挥 LLM 的潜力。不再受制于云端服务的限制,我们可以灵活地定制和配置模型,以满足特定需求,并在本地环境中获得更高的性能和效率。这为我们提供了更大的控制权和灵活性,同时降低了对外部云端服务的依赖。
基于 Ollama,我们可以拓展我们的研究和开发能力,探索更广泛的应用场景,并且在保护数据隐私方面更加安心。我们可以在本地环境中充分利用这些强大的语言模型,解决复杂的问题,推动创新的进展。总之,Ollama 为我们提供了一个强大且可靠的方式,让我们能够本地运行 LLM,释放出其全部潜力。
这里,我们以 Mac 平台为例,简单地部署运行 Llama 3 大模型,具体可参考如下步骤所示:
Ollama 不仅提供了直接在本地运行 LLM 的便利性,还具备了出色的扩展性和集成能力。这款开源平台允许开发者在本地启动HTTP服务器,将强大的 LLM 能力对接到各类应用程序中,大大拓展了 AI 助手的应用边界。
举例来说,通过集成 Ollama 的本地 HTTP 服务器,我们可以将其无缝融入到广受欢迎的 Code GPT VSCode 扩展之中。开发人员只需在扩展中配置本地服务器地址,便可立即体验到 LLM 在代码编写、优化、错误修复等方面的神级辅助能力。不再被云服务的延迟、隐私泄露等问题所困扰,开发者可以尽情释放 LLM 的潜能,大幅提高工作效率和代码质量。
Ollama 本地服务器的优势并不仅限于此。无论是网站开发中的内容生成、商业分析领域的智能决策支持,还是个人生活中的文本写作助手,Ollama 都可以作为底层 LLM 引擎,为各类应用程序赋能,让人工智能无所不在。更妙的是,这一切仅需在本地计算机上运行 Ollama,就能畅享 LLM 的强大功能,而无需昂贵的云服务费用。
GPT4ALL
基于海量数据训练而成的AI模型,展现出了令人惊叹的自然语言处理能力,在文本理解、生成、推理等多个领域引领了技术革新。然而,庞大的计算资源需求也使绝大多数普通用户和中小企业无缘于LLMs强大的能力。
正是基于这一现状,GPT4All 生态系统应运而生,旨在打造最佳的教学调整助理风格语言模型,突破LLM模型的资源枷锁,让每个个人和企业都能自由使用、分发和构建定制化的大规模语言模型。
GPT4All 生态系统的核心是经过优化的 LLM 模型文件,体积仅为 3GB-8GB,却蕴含着卓越的自然语言处理实力。用户只需下载并集成这些模型文件,即可立即体验到强大的 AI 助理功能,无需耗费高昂的云服务费用。更重要的是,这些模型可在普通消费级 CPU 上高效运行,解决了传统 LLM 在终端设备上部署的痛点。
除了开箱即用的优化模型,GPT4All 生态系统还提供了灵活的模型训练和定制化工具链。无论是个人开发者还是企业用户,都可以基于 GPT4All 的框架,使用自有数据为 LLM 模型进行教学微调,从而量身定制出符合自身需求的专属 AI 助手。
GPT4All 生态系统并非只是一个提供优化语言模型的平台,而更是一个极具实用价值的人工智能助手。通过提供对重要文档和代码库的访问权限,GPT4All 能够充分发挥其检索增强生成(Retrieval-Augmented Generation)的强大能力,为用户生成高度相关且信息丰富的响应。
具体来说,用户可以指定 GPT4All 模型访问包含了诸如产品文档、技术手册、法律合同等重要文件的文件夹,甚至是庞大的代码库。GPT4All 会自动分析和索引这些内容,将其与语言模型的知识库相结合,形成一个涵盖范围广阔的语义知识图谱。在此基础上,当用户提出查询或请求时,GPT4All 不仅会基于模型本身的知识进行回答,更会从相关文档和代码中检索并综合相关信息,从而生成令人惊艳的高质量响应。
这一检索增强生成的能力使 GPT4All 的应用场景得到极大扩展。无论是企业级的智能知识库构建、代码分析和优化,还是个人层面的写作辅助和信息整合,GPT4All 都能发挥出超乎想象的威力,成为全场景下的得力智能助手。
在 GPT4All 生态系统中,本地大型语言模型(Local LLMs)的运行效率是一个值得重点关注的问题。推理速度直接决定着用户的交互体验,过于滞缓的响应将极大影响模型的实用价值。
影响本地 LLM 推理速度的两大关键因素是:模型的规模大小,以及输入的文本上下文令牌数量。一般来说,模型越大,对应的计算需求就越高;而输入上下文越长,模型也需要消耗更多资源进行处理。因此,在本地 CPU 环境下运行体积庞大、输入上下文冗长的 LLM 模型时,往往会遇到推理速度严重下降的问题。
为了避免这一情况,GPT4All 团队给出了明确的建议:如果需要处理的上下文窗口超过750个令牌,最好将 LLM 模型部署在 GPU 环境中运行。这不仅能最大程度地发挥模型性能,还可确保在处理大量上下文时,保持流畅高效的推理速度。事实上,GPT4All 在开发路线图中已经计划支持所有型号的 LLM 在 GPU 上本地化运行,以满足需求更加苛刻的场景。
不难看出,GPT4All 团队在系统设计上体现了极高的务实性和前瞻性。他们深知终端设备的算力限制,因而采取了针对性的优化措施,最大限度挖掘硬件性能,为用户带来流畅一致的本地 LLM 体验。
除了 GPU 加速,GPT4All 还在模型层面进行了多方面的优化,以提升在 CPU 环境下的推理效率。这包括模型剪枝、量化、知识蒸馏等前沿技术的应用,有效降低了模型在保持性能的同时所需的内存和算力资源。这些创新策略的实现,再次印证了 GPT4All 团队在 AI 算法和系统架构方面的卓越能力。
可以说,推理加速是 GPT4All 赖以立足的技术支柱。只有确保 Local LLMs 能快速流畅地响应,GPT4All 才能真正释放 LLM 的全部价值,为用户提供无缝的智能体验。因此,我们有理由相信,随着 GPU 本地化支持的到来,以及更多优化技术的推出,GPT4All 生态系统的性能将再获质的飞跃,继续引领本地 LLM 的未来发展方向。
LLaMA.cpp
在推动人工智能大众化、本地化进程中,LLaMA.cpp 无疑扮演着先锋的角色。作为一款高度通用的工具,它为用户提供了在本地轻松使用任何开源大型语言模型(Open Source LLMs)的便利,消除了云服务依赖及其带来的种种顾虑。
LLaMA.cpp 的设计理念是赋能和自由,它以命令行界面(CLI)和图形用户界面(GUI)两种方式为用户开启通往本地 LLM 世界的大门。无论是资深开发者还是新手用户,都能在 LLaMA.cpp 的引导下,快速上手并充分挖掘本地 LLM 的潜力。
更为值得一提的是,LLaMA.cpp 背后有着坚实的技术实力支撑。作为一款纯 C/C++ 编写的工具,它展现出了令人赞叹的性能表现。对于任何查询请求,LLaMA.cpp 都能在瞬间作出响应,完全避免了网络延迟等问题,给用户带来流畅、高效的本地 LLM 体验。
这种出色的响应速度源自 LLaMA.cpp 对开源 LLM 模型的深度优化。工具内置了诸如模型剪枝、量化、知识蒸馏等多种先进技术,有效降低了模型在 CPU 和 GPU 环境下的计算资源占用,确保即使在普通个人电脑上,也能够发挥 LLM 的最大潜能。
可以说,LLaMA.cpp 是 GPT4All 等本地 LLM 生态系统中的佼佼者。凭借多方位的优化支持,用户无需高端硬件,即可轻松调用各种开源大模型,在本地完成文本生成、问答、代码编写等多种任务。
与此同时,LLaMA.cpp 还为用户保留了充分的自主权。作为一款高度可定制的工具,它提供了丰富的自定义选项,允许用户根据自身需求调整模型参数、设置偏好,甚至可以在本地对模型进行微调和再训练。这种"开箱即用"但又"可自由改造"的特性,充分契合了人工智能 “Democratization” 的理念。
无疑,这三款工具各具特色,但同时也存在一些共通之处。它们都基于完全开源的架构,代码和模型细节对开发者透明,有利于吸引更多贡献者加入,共同推动生态系统的繁荣发展。此外,它们均支持跨平台、跨硬件环境的部署,确保无论用户使用何种设备,都能获得一致优质的本地 LLM 体验。
最值得一提的是,这些工具都为用户保留了对本地 LLM 的完全所有权和控制权。无需像使用云服务那样将隐私数据托付于第三方,用户可以完全掌控本地模型的输入输出,避免潜在的数据泄露风险,充分保障数据和知识产权的安全。
Reference :
- [1] https://github.com/ollama/ollama?tab=readme-ov-file#ollama
- [2] https://github.com/nomic-ai/gpt4all
- [3] https://github.com/ggerganov/llama.cpp?tab=readme-ov-file