说到Python处理大数据集,别说你会用Pandas

开发 后端
Pandas的特点就是很适合做数据处理,比如读写、转换、连接、去重、分组聚合、时间序列、可视化等等,但Pandas的特点是效率略低,不擅长数值计算。

说到Python处理大数据集,可能会第一时间想到Numpy或者Pandas。

这两个库使用场景有些不同,Numpy擅长于数值计算,因为它基于数组来运算的,数组在内存中的布局非常紧凑,所以计算能力强。但Numpy不适合做数据处理和探索,缺少一些现成的数据处理函数。

而Pandas的特点就是很适合做数据处理,比如读写、转换、连接、去重、分组聚合、时间序列、可视化等等,但Pandas的特点是效率略低,不擅长数值计算。

你可以同时使用Pandas和Numpy分工协作,做数据处理时用Pandas,涉及到运算时用Numpy,它们的数据格式互转也很方便。

目前前言,最多人使用的Python数据处理库仍然是pandas,这里重点说说它读取大数据的一般方式。

Pandas读取大数据集可以采用chunking分块读取的方式,用多少读取多少,不会太占用内存。

import pandas as pd  
  
# 设置分块大小,例如每次读取 10000 行  
chunksize = 10000  
  
# 使用 chunksize 参数分块读取 CSV 文件  
for chunk in pd.read_csv('large_file.csv', chunksize=chunksize):  
    # 在这里处理每个 chunk,例如打印每行的信息  
    print(chunk.head())  # 或者其他你需要的操作  
  
    # 如果你需要保存或进一步处理每个 chunk 的数据,可以在这里进行  
    # 例如,你可以将每个 chunk 写入不同的文件,或者对 chunk 进行某种计算并保存结果

但使用分块读取时也要注意,不要在循环内部进行大量计算或内存密集型的操作,否则可能会消耗过多的内存或降低性能。

其次你可以考虑使用用Pandas读取数据库(如PostgreSQL、SQLite等)或外部存储(如HDFS、Parquet等),这会大大降低内存的压力。

尽管如此,Pandas读取大数据集能力也是有限的,取决于硬件的性能和内存大小,你可以尝试使用PySpark,它是Spark的python api接口。

PySpark提供了类似Pandas DataFrame的数据格式,你可以使用toPandas() 的方法,将 PySpark DataFrame 转换为 pandas DataFrame,但需要注意的是,这可能会将所有数据加载到单个节点的内存中,因此对于非常大的数据集可能不可行)。

相反,你也可以使用 createDataFrame() 方法从 pandas DataFrame 创建一个 PySpark DataFrame。

PySpark处理大数据的好处是它是一个分布式计算机系统,可以将数据和计算分布到多个节点上,能突破你的单机内存限制。

其次,PySpark采用懒执行方式,需要结果时才执行计算,其他时候不执行,这样会大大提升大数据处理的效率。

from pyspark.sql import SparkSession  
  
# 创建一个 SparkSession 对象  
spark = SparkSession.builder \  
    .appName("Big Data Processing with PySpark") \  
    .getOrCreate()  
  
# 读取 CSV 文件  
# 假设 CSV 文件名为 data.csv,并且有一个名为 'header' 的表头  
# 你需要根据你的 CSV 文件的实际情况修改这些参数  
df = spark.read.csv("path_to_your_csv_file/data.csv", header=True, inferSchema=True)  
  
# 显示数据集的前几行  
df.show(5)  
  
# 对数据进行一些转换  
# 例如,我们可以选择某些列,并对它们应用一些函数  
# 假设我们有一个名为 'salary' 的列,并且我们想要增加它的值(仅作为示例)  
df_transformed = df.withColumn("salary_increased", df["salary"] * 1.1)  
  
# 显示转换后的数据集的前几行  
df_transformed.show(5)  
  
# 将结果保存到新的 CSV 文件中  
# 注意:Spark 默认不会保存表头到 CSV,你可能需要手动处理这个问题  
df_transformed.write.csv("path_to_save_transformed_csv/transformed_data", header=True)  
  
# 停止 SparkSession  
spark.stop()

如果你不会使用PySpark,可以考虑Pandas的拓展库,比如modin、dask、polars等,它们提供了类似pandas的数据类型和函数接口,但使用多进程、分布式等方式来处理大数据集。

modin库

import modin.pandas as pd  
  
# 读取 CSV 文件  
df = pd.read_csv('path_to_your_csv_file.csv')  
  
# 显示前几行  
print(df.head())

Dask库

import dask.dataframe as dd  
  
# 读取 CSV 文件  
df = dd.read_csv('path_to_your_csv_file.csv')  
  
# 触发计算并显示前几行(注意这里使用的是 compute 方法)  
print(df.head().compute())

Polars库

import polars as pl
  
# 读取 CSV 文件  
df = pl.read_csv('path_to_your_csv_file.csv')  
  
# 显示前几行
print(df.head())

这几个库的好处是,使用成本很低,基本和pandas操作方式一样,但又能很好的处理大数据。

所以说Pandas是完全能胜任处理大数据集的,它目前的周边生态库非常丰富。

责任编辑:姜华 来源: 今日头条
相关推荐

2019-01-28 17:42:33

Python数据预处理数据标准化

2023-08-30 09:16:38

PandasPython

2020-03-11 08:00:00

.NET异常处理编程语言

2022-12-30 15:29:35

数据分析工具Pandas

2022-11-17 11:52:35

pandasPySpark大数据

2023-11-27 13:58:00

数据预处理数据标准化

2017-02-28 10:54:40

Pandas

2018-02-08 09:37:27

Pandas大数据Spark

2014-02-09 16:20:20

大数据

2019-01-10 17:08:09

华为

2020-06-24 11:59:31

PythonPandas数据处理

2023-12-12 11:06:37

PythonPandas数据

2023-09-25 13:19:41

pandasPython

2020-10-29 06:02:44

PythonPandasExcel

2024-04-08 00:00:00

asyncawaiPromise

2022-02-10 09:04:50

架构

2020-05-19 17:09:33

Pandas大数据数据分析

2019-08-27 17:32:10

数据处理PandasPython

2021-01-04 10:40:37

Python不平衡数据机器学习

2021-08-12 08:00:00

Pandas数据分析SQL
点赞
收藏

51CTO技术栈公众号