今天我们一起看一下Java基础类:String
定义
- String表示字符串类型,属于引用数据类型,不属于基本数据类型。
- 在java中随便使用 双引号括起来 的都是String对象。例如:"abc","def","hello world!",这是3个String对象。
- java中规定,双引号括起来的字符串,是 不可变 的,也就是说"abc"自出生到最终死亡,不可变,不能变成"abcd",也不能变成"ab"
源码解读
public final class String implements java.io.Serializable, Comparable<String>, CharSequence {
/**用来存储字符串 */
private final char value[];
/** 缓存字符串的哈希码 */
private int hash; // Default to 0
/** 实现序列化的标识 */
private static final long serialVersionUID = -6849794470754667710L;
}
这是一个用 final 声明的常量类,不能被任何类所继承,而且一旦一个String对象被创建, 包含在这个对象中的字符序列是不可改变的, 包括该类后续的所有方法都是不能修改该对象的,直至该对象被销毁,这是我们需要特别注意的(该类的一些方法看似改变了字符串,其实内部都是创建一个新的字符串,下面讲解方法时会介绍)。
通过上述代码可以发现,一个 String 字符串实际上是一个 char 数组。
声明方式
//注意这种字面量声明的区别
String str1 = "abc";
String str2 = new String("abc");
JDK1.6
那么这两种声明方式有什么区别呢?在讲解之前,我们先介绍 JDK1.7(不包括1.7)以前的 JVM 的内存分布:
图片
- 程序计数器:也称为 PC 寄存器,保存的是程序当前执行的指令的地址(也可以说保存下一条指令的所在存储单元的地址),当CPU需要执行指令时,需要从程序计数器中得到当前需要执行的指令所在存储单元的地址,然后根据得到的地址获取到指令,在得到指令之后,程序计数器便自动加1或者根据转移指针得到下一条指令的地址,如此循环,直至执行完所有的指令。线程私有。
- 虚拟机栈:基本数据类型、对象的引用都存放在这。线程私有。
- 本地方法栈:虚拟机栈是为执行Java方法服务的,而本地方法栈则是为执行本地方法(Native Method)服务的。在JVM规范中,并没有对本地方法栈的具体实现方法以及数据结构作强制规定,虚拟机可以自由实现它。在HotSopt虚拟机中直接就把本地方法栈和虚拟机栈合二为一。
- 方法区:存储了每个类的信息(包括类的名称、方法信息、字段信息)、静态变量、常量以及编译器编译后的代码等。注意:在Class文件中除了类的字段、方法、接口等描述信息外,还有一项信息是常量池,用来存储编译期间生成的字面量和符号引用。
- 堆:用来存储对象本身的以及数组(当然,数组引用是存放在Java栈中的)。
JDK1.7及以后
在 JDK1.7 以后,方法区的常量池被移除放到堆中了,如下:
图片
常量池:Java运行时会维护一个String Pool(String池), 也叫“字符串缓冲区”。String池用来存放运行时中产生的各种字符串,并且池中的字符串的内容不重复。
- 字面量创建字符串或者纯字符串(常量)拼接字符串会先在字符串池中找,看是否有相等的对象,没有的话就在字符串池创建该对象;有的话则直接用池中的引用,避免重复创建对象。
- new关键字创建时,直接在堆中创建一个新对象,变量所引用的都是这个新对象的地址,但是如果通过new关键字创建的字符串内容在常量池中存在了,那么会由堆在指向常量池的对应字符;但是反过来,如果通过new关键字创建的字符串对象在常量池中没有,那么通过new关键词创建的字符串对象是不会额外在常量池中维护的。
- 使用包含变量表达式来创建String对象,则不仅会检查维护字符串池,还会在堆区创建这个对象,最后是指向堆内存的对象。
内存分析
1. String str = "Hello";
public class stringclass {
public static void main(String[] args) {
String str="Hello";
String str2="Hello";
System.out.println(str==str2);
str="World";
}
}
//输出结果:true
图片
2. String str = new String ("Hello");
public class stringclass {
public static void main(String[] args) {
String str= new String("Hello");
String str2= new String("Hello");
String str3 = "Hello";
System.out.println(str==str2);
System.out.println(str==str3);
}
}
//输出结果:false false
3. String str = "Hello" + "World";
public class stringclass {
public static void main(String[] args) {
//当一个字符串由多个字符串常量连接而成时,它自己肯定也是字符串常量。
//该字符串是在编译期就能确定。先是在池里生成“a”和“b”,再通过拼接的方式在池里生成"ab"。
String str="Hello" + "World";
}
}
图片
4. String str = new String ("Hello") + new String("World");
当使用了变量字符串的拼接(+, sb.append)都只会在堆区创建该字符串对象, 并不会在常量池创建新生成的字符串
public class stringclass {
public static void main(String[] args) {
String str=new String("Hello") + new String("World");
}
}
图片
常见操作
1. equals(Object anObject)
public boolean equals(Object anObject) {
if (this == anObject) {
return true;
}
if (anObject instanceof String) {
String anotherString = (String)anObject;
int n = value.length;
if (n == anotherString.value.length) {
char v1[] = value;
char v2[] = anotherString.value;
int i = 0;
while (n-- != 0) {
if (v1[i] != v2[i])
return false;
i++;
}
return true;
}
}
return false;
}
String 类重写了 equals 方法,比较的是组成字符串的每一个字符是否相同,如果都相同则返回true,否则返回false。
2. hashCode()
public int hashCode() {
int h = hash;
if (h == 0 && value.length > 0) {
char val[] = value;
for (int i = 0; i < value.length; i++) {
h = 31 * h + val[i];
}
hash = h;
}
return h;
}
String 类的 hashCode 算法很简单,主要就是中间的 for 循环,计算公式如下:
s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
s 数组即源码中的 val 数组,也就是构成字符串的字符数组。这里有个数字 31 ,为什么选择31作为乘积因子,而且没有用一个常量来声明?主要原因有两个:
- 31是一个不大不小的质数,是作为 hashCode 乘子的优选质数之一。
- 31可以被 JVM 优化,31 * i = (i << 5) - i。因为移位运算比乘法运行更快更省性能。
3. charAt(int index)
public char charAt(int index) {
//如果传入的索引大于字符串的长度或者小于0,直接抛出索引越界异常
if ((index < 0) || (index >= value.length)) {
throw new StringIndexOutOfBoundsException(index);
}
return value[index];//返回指定索引的单个字符
}
我们知道一个字符串是由一个字符数组组成,这个方法是通过传入的索引(数组下标),返回指定索引的单个字符。
4. compareTo(String anotherString)
public int compareTo(String anotherString) {
int len1 = value.length;
int len2 = anotherString.value.length;
int lim = Math.min(len1, len2);
char v1[] = value;
char v2[] = anotherString.value;
int k = 0;
while (k < lim) {
char c1 = v1[k];
char c2 = v2[k];
if (c1 != c2) {
return c1 - c2;
}
k++;
}
return len1 - len2;
}
源码也很好理解,该方法是按字母顺序比较两个字符串,是基于字符串中每个字符的 Unicode 值。当两个字符串某个位置的字符不同时,返回的是这一位置的字符 Unicode 值之差,当两个字符串都相同时,返回两个字符串长度之差。
compareToIgnoreCase() 方法在 compareTo 方法的基础上忽略大小写,我们知道大写字母是比小写字母的Unicode值小32的,底层实现是先都转换成大写比较,然后都转换成小写进行比较。
5. concat(String str)
public String concat(String str) {
int otherLen = str.length();
if (otherLen == 0) {
return this;
}
int len = value.length;
char buf[] = Arrays.copyOf(value, len + otherLen);
str.getChars(buf, len);
return new String(buf, true);
}
该方法是将指定的字符串连接到此字符串的末尾。
首先判断要拼接的字符串长度是否为0,如果为0,则直接返回原字符串。如果不为0,则通过 Arrays 工具类的copyOf方法创建一个新的字符数组,长度为原字符串和要拼接的字符串之和,前面填充原字符串,后面为空。接着在通过 getChars 方法将要拼接的字符串放入新字符串后面为空的位置。
注意:返回值是 new String(buf, true),也就是重新通过 new 关键字创建了一个新的字符串,原字符串是不变的。这也是前面我们说的一旦一个String对象被创建, 包含在这个对象中的字符序列是不可改变的。
6. indexOf(int ch)
public int indexOf(int ch) {
return indexOf(ch, 0);//从第一个字符开始搜索
}
public int indexOf(int ch, int fromIndex) {
final int max = value.length;//max等于字符的长度
if (fromIndex < 0) {//指定索引的位置如果小于0,默认从 0 开始搜索
fromIndex = 0;
} else if (fromIndex >= max) {
//如果指定索引值大于等于字符的长度(因为是数组,下标最多只能是max-1),直接返回-1
return -1;
}
if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {//一个char占用两个字节,如果ch小于2的16次方(65536),绝大多数字符都在此范围内
final char[] value = this.value;
for (int i = fromIndex; i < max; i++) {//for循环依次判断字符串每个字符是否和指定字符相等
if (value[i] == ch) {
return i;//存在相等的字符,返回第一次出现该字符的索引位置,并终止循环
}
}
return -1;//不存在相等的字符,则返回 -1
}else {//当字符大于 65536时,处理的少数情况,该方法会首先判断是否是有效字符,然后依次进行比较
return indexOfSupplementary(ch, fromIndex);
}
}
indexOf(int ch),参数 ch 其实是字符的 Unicode 值,这里也可以放单个字符(默认转成int),作用是返回指定字符第一次出现的此字符串中的索引。其内部是调用 indexOf(int ch, int fromIndex),只不过这里的 fromIndex =0 ,因为是从 0 开始搜索;而 indexOf(int ch, int fromIndex) 作用也是返回首次出现的此字符串内的索引,但是从指定索引处开始搜索。
7. substring(int beginIndex)
public String substring(int beginIndex) {
if (beginIndex < 0) {//如果索引小于0,直接抛出异常
throw new StringIndexOutOfBoundsException(beginIndex);
}
int subLen = value.length - beginIndex;//subLen等于字符串长度减去索引
if (subLen < 0) {//如果subLen小于0,也是直接抛出异常
throw new StringIndexOutOfBoundsException(subLen);
}
//1、如果索引值beginIdex == 0,直接返回原字符串
//2、如果不等于0,则返回从beginIndex开始,一直到结尾
return (beginIndex == 0) ? this : new String(value, beginIndex, subLen);
}
返回一个从索引 beginIndex 开始一直到结尾的子字符串。
String不可变性
String 类为什么要这样设计成不可变呢?我们可以从性能以及安全方面来考虑:
- 安全
引发安全问题,譬如,数据库的用户名、密码都是以字符串的形式传入来获得数据库的连接,或者在socket编程中,主机名和端口都是以字符串的形式传入。因为字符串是不可变的,所以它的值是不可改变的,否则黑客们可以钻到空子,改变字符串指向的对象的值,造成安全漏洞。
保证线程安全,在并发场景下,多个线程同时读写资源时,会引竞态条件,由于 String 是不可变的,不会引发线程的问题而保证了线程。
HashCode,当 String 被创建出来的时候,hashcode也会随之被缓存,hashcode的计算与value有关,若 String 可变,那么 hashcode 也会随之变化,针对于 Map、Set 等容器,他们的键值需要保证唯一性和一致性,因此,String 的不可变性使其比其他对象更适合当容器的键值。
- 性能
- 当字符串是不可变时,字符串常量池才有意义。字符串常量池的出现,可以减少创建相同字面量的字符串,让不同的引用指向池中同一个字符串,为运行时节约很多的堆内存。若字符串可变,字符串常量池失去意义,基于常量池的String.intern()方法也失效,每次创建新的 String 将在堆内开辟出新的空间,占据更多的内存。