超越GPT-4,斯坦福团队手机可跑的大模型火了,一夜下载量超2k

人工智能 新闻
近日,斯坦福大学研究人员推出的 Octopus v2 火了,受到了开发者社区的极大关注,模型一夜下载量超 2k。

想了解更多AIGC的内容,请访问:

51CTO AI.x社区

https://www.51cto.com/aigc/

在大模型落地应用的过程中,端侧 AI 是非常重要的一个方向。

近日,斯坦福大学研究人员推出的 Octopus v2 火了,受到了开发者社区的极大关注,模型一夜下载量超 2k。

20 亿参数的 Octopus v2 可以在智能手机、汽车、个人电脑等端侧运行,在准确性和延迟方面超越了 GPT-4,并将上下文长度减少了 95%。此外,Octopus v2 比 Llama7B + RAG 方案快 36 倍。

不少网友感叹:设备端 AI 智能体的时代到来了!

图片


  • 论文:Octopus v2: On-device language model for super agent
  • 论文地址:https://arxiv.org/abs/2404.01744
  • 模型主页:https://huggingface.co/NexaAIDev/Octopus-v2

模型概述

Octopus-V2-2B 是一个拥有 20 亿参数的开源语言模型,专为 Android API 量身定制,旨在在 Android 设备上无缝运行,并将实用性扩展到从 Android 系统管理到多个设备的编排等各种应用程序。

通常,检索增强生成 (RAG) 方法需要对潜在函数参数进行详细描述(有时需要多达数万个输入 token)。基于此,Octopus-V2-2B 在训练和推理阶段引入了独特的函数 token 策略,不仅使其能够达到与 GPT-4 相当的性能水平,而且还显著提高了推理速度,超越了基于 RAG 的方法,这使得它对边缘计算设备特别有利。

Octopus-V2-2B 能够在各种复杂场景中生成单独的、嵌套的和并行的函数调用。

数据集

为了训练、验证和测试阶段采用高质量数据集,特别是实现高效训练,研究团队用三个关键阶段创建数据集:

  • 生成相关的查询及其关联的函数调用参数;
  • 由适当的函数组件生成不相关的查询; 
  • 通过 Google Gemini 实现二进制验证支持。

研究团队编写了 20 个 Android API 描述,用于训练模型。下面是一个 Android API 描述示例:

def get_trending_news (category=None, reginotallow='US', language='en', max_results=5):

    """

    Fetches trending news articles based on category, region, and language.

    Parameters:

    - category (str, optional): News category to filter by, by default use None for all categories. Optional to provide.

    - region (str, optional): ISO 3166-1 alpha-2 country code for region-specific news, by default, uses 'US'. Optional to provide.

    - language (str, optional): ISO 639-1 language code for article language, by default uses 'en'. Optional to provide.

    - max_results (int, optional): Maximum number of articles to return, by default, uses 5. Optional to provide.

    Returns:

    - list [str]: A list of strings, each representing an article. Each string contains the article's heading and URL.

    """

模型开发与训练

该研究采用 Google Gemma-2B 模型作为框架中的预训练模型,并采用两种不同的训练方法:完整模型训练和 LoRA 模型训练。

在完整模型训练中,该研究使用 AdamW 优化器,学习率设置为 5e-5,warm-up 的 step 数设置为 10,采用线性学习率调度器。

LoRA 模型训练采用与完整模型训练相同的优化器和学习率配置,LoRA rank 设置为 16,并将 LoRA 应用于以下模块:q_proj、k_proj、v_proj、o_proj、up_proj、down_proj。其中,LoRA alpha 参数设置为 32。

对于两种训练方法,epoch 数均设置为 3。

使用以下代码,就可以在单个 GPU 上运行 Octopus-V2-2B 模型。

from transformers import AutoTokenizer, GemmaForCausalLMimport torchimport time

def inference (input_text):

    start_time = time.time ()

    input_ids = tokenizer (input_text, return_tensors="pt").to (model.device)

    input_length = input_ids ["input_ids"].shape [1]

    outputs = model.generate (

        input_ids=input_ids ["input_ids"], 

        max_length=1024,

        do_sample=False)

    generated_sequence = outputs [:, input_length:].tolist ()

    res = tokenizer.decode (generated_sequence [0])

    end_time = time.time ()

    return {"output": res, "latency": end_time - start_time}

model_id = "NexaAIDev/Octopus-v2"

tokenizer = AutoTokenizer.from_pretrained (model_id)

model = GemmaForCausalLM.from_pretrained (

    model_id, torch_dtype=torch.bfloat16, device_map="auto"

)

input_text = "Take a selfie for me with front camera"

nexa_query = f"Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: {input_text} \n\nResponse:"

start_time = time.time () print ("nexa model result:\n", inference (nexa_query)) print ("latency:", time.time () - start_time,"s")

评估

Octopus-V2-2B 在基准测试中表现出卓越的推理速度,在单个 A100 GPU 上比「Llama7B + RAG 解决方案」快 36 倍。此外,与依赖集群 A100/H100 GPU 的 GPT-4-turbo 相比,Octopus-V2-2B 速度提高了 168%。这种效率突破归功于 Octopus-V2-2B 的函数性 token 设计。

Octopus-V2-2B 不仅在速度上表现出色,在准确率上也表现出色,在函数调用准确率上超越「Llama7B + RAG 方案」31%。Octopus-V2-2B 实现了与 GPT-4 和 RAG + GPT-3.5 相当的函数调用准确率。

感兴趣的读者可以阅读论文原文,了解更多研究内容。

想了解更多AIGC的内容,请访问:

51CTO AI.x社区

https://www.51cto.com/aigc/

责任编辑:张燕妮 来源: 机器之心
相关推荐

2023-10-12 14:18:06

2024-07-09 12:59:37

2024-01-03 13:37:00

模型数据

2023-03-15 10:35:16

GPTAI

2024-07-08 08:38:00

模型推理

2023-03-14 12:45:32

2023-10-20 16:57:09

2011-10-25 14:45:19

AndroidiOS应用

2023-09-11 15:57:16

人工智能模型GPT-4

2023-09-21 12:31:54

AI数据

2023-06-15 14:00:00

研究模型

2024-06-06 16:16:00

2023-10-06 12:48:43

AI论文

2023-10-17 13:33:00

AI数据

2023-06-05 15:44:15

GPT-4AI

2023-12-26 14:56:59

模型训练

2024-01-30 21:18:57

模型智能CMMLU

2024-04-01 12:41:55

2023-03-15 10:26:00

模型开源

2022-07-14 15:08:23

AI模型
点赞
收藏

51CTO技术栈公众号