扩散模型(Diffusion Model)是图像生成模型的一种。有别于此前 AI 领域大名鼎鼎的 GAN、VAE 等算法,扩散模型另辟蹊径,其主要思想是一种先对图像增加噪声,再逐步去噪的过程,其中如何去噪还原图像是算法的核心部分。而它的最终算法能够从一张随机的噪声图像中生成图像。
近年来,生成式 AI 的惊人增长为文本到图像生成、视频生成领域等许多令人兴奋的应用提供了支持。这些生成工具背后的基本原理是扩散的概念,这是一种特殊的采样机制,克服了以前的方法中被认为难以解决的一些缺点。
最近,来自普渡大学的 Stanley H. Chan 发布了一份扩散模型的教程《Tutorial on Diffusion Models for Imaging and Vision》,对该方向技术进行了直观详尽的解释。
本教程的目标是讨论扩散模型的基本思想,目标受众包括对扩散模型研究,或应用这些模型正在解决其他问题的本科生和研究生。
文章链接:https://arxiv.org/abs/2403.18103
该教程包括四个部分,涵盖了最近研究文献中支持扩散生成模型的一些基本概念:变分自编码器(VAE)、DDPM(Denoising Diffusion Probabilistic Models)、SMLD(Score Matching with Langevin Dynamics)和 SDE,从多个角度独立导出了相同的扩散思想,共长 50 页。
作者介绍
这篇教程的作者是美国普渡大学电气与计算机工程学院和统计学系 Elmore 副教授 Stanley H. Chan。
Stanley Chan 2007 年在香港大学获得学士学位,2009 年、2011 年分别在加州大学圣地亚哥分校获得数学硕士学位和电气工程博士学位。2012 年至 2014 年在哈佛大学约翰・A・保尔森工程与应用科学学院担任博士后研究员。2014 年加入普渡大学。
Stanley Chan 主要从事计算成像研究。他的研究任务是通过共同设计传感器和算法来构建智能相机,以实现在所有成像条件下的可视性。
Stanley Chan 还多次获得论文奖项,包括 2022 年 IEEE 信号处理学会(SPS)最佳论文奖、2016 年 IEEE 国际图像处理会议(ICIP)最佳论文奖等等。