CUDA之通用矩阵乘法:从入门到熟练!

人工智能 新闻
本文将通过对 GEMM 的实现和优化,来试图理解高性能计算和软硬件系统。

本文经自动驾驶之心公众号授权转载,转载请联系出处。

通用矩阵乘法 (General Matrix Multiplication,GEMM) 是各种模型和计算中的核心部分,同时也是评估计算硬件性能 (FLOPS) 的标准技术。本文将通过对 GEMM 的实现和优化,来试图理解高性能计算和软硬件系统。

一、GEMM的基本特征

1.1 GEMM计算过程及复杂度

GEMM 的定义为:

图片图片

图片图片

矩阵乘法的计算示意

1.2 简单实现及过程分析

图片

下面是按照原始定义实现的 CPU 上实现的代码,之后用以作为精度的对照

#define OFFSET(row, col, ld) ((row) * (ld) + (col))

void cpuSgemm(
    float *a, float *b, float *c, const int M, const int N, const int K) {

    for (int m = 0; m < M; m++) {
        for (int n = 0; n < N; n++) {
            float psum = 0.0;
            for (int k = 0; k < K; k++) {
                psum += a[OFFSET(m, k, K)] * b[OFFSET(k, n, N)];
            }
            c[OFFSET(m, n, N)] = psum;
        }
    }
}

下面使用CUDA实现最简单的矩阵乘法的Kernal,一共使用 M * N 个线程完成整个矩阵乘法。每个线程负责矩阵C中一个元素的计算,需要完成K次乘累加。矩阵A,B,C均存放与全局内存中(由修饰符 __global__ 确定),完整代码见 sgemm_naive.cu 。

__global__ void naiveSgemm(
    float * __restrict__ a, float * __restrict__ b, float * __restrict__ c,
    const int M, const int N, const int K) {

    int n = blockIdx.x * blockDim.x + threadIdx.x;
    int m = blockIdx.y * blockDim.y + threadIdx.y;
    if (m < M && n < N) {
        float psum = 0.0;
        #pragma unroll
        for (int k = 0; k < K; k++) {
            psum += a[OFFSET(m, k, K)] * b[OFFSET(k, n, N)];
        }
        c[OFFSET(m, n, N)] = psum;
    }
}

const int BM = 32, BN = 32;
const int M = 512, N = 512, K = 512;
dim3 blockDim(BN, BM);
dim3 gridDim((N + BN - 1) / BN, (M + BM - 1) / BM);

编译完成,在Tesla V100-PCIE-32GB上执行的结果如下,根据V100的白皮书,FP32 的峰值算力为 15.7 TFLOPS,因此该方式算力利用率仅有11.5%。

M N K =    128    128   1024, Time =   0.00010083   0.00010260   0.00010874 s, AVG Performance =   304.5951 Gflops
M N K =    192    192   1024, Time =   0.00010173   0.00010198   0.00010253 s, AVG Performance =   689.4680 Gflops
M N K =    256    256   1024, Time =   0.00010266   0.00010318   0.00010384 s, AVG Performance =  1211.4281 Gflops
M N K =    384    384   1024, Time =   0.00019475   0.00019535   0.00019594 s, AVG Performance =  1439.7206 Gflops
M N K =    512    512   1024, Time =   0.00037693   0.00037794   0.00037850 s, AVG Performance =  1322.9753 Gflops
M N K =    768    768   1024, Time =   0.00075238   0.00075558   0.00075776 s, AVG Performance =  1488.9271 Gflops
M N K =   1024   1024   1024, Time =   0.00121562   0.00121669   0.00121789 s, AVG Performance =  1643.8068 Gflops
M N K =   1536   1536   1024, Time =   0.00273072   0.00275611   0.00280208 s, AVG Performance =  1632.7386 Gflops
M N K =   2048   2048   1024, Time =   0.00487622   0.00488028   0.00488614 s, AVG Performance =  1639.2518 Gflops
M N K =   3072   3072   1024, Time =   0.01001603   0.01071136   0.01099990 s, AVG Performance =  1680.4589 Gflops
M N K =   4096   4096   1024, Time =   0.01771046   0.01792170   0.01803462 s, AVG Performance =  1785.5450 Gflops
M N K =   6144   6144   1024, Time =   0.03988969   0.03993405   0.04000595 s, AVG Performance =  1802.9724 Gflops
M N K =   8192   8192   1024, Time =   0.07119219   0.07139694   0.07160816 s, AVG Performance =  1792.7940 Gflops
M N K =  12288  12288   1024, Time =   0.15978026   0.15993242   0.16043369 s, AVG Performance =  1800.7606 Gflops
M N K =  16384  16384   1024, Time =   0.28559187   0.28567238   0.28573316 s, AVG Performance =  1792.2629 Gflops

下面以M=512,K=512,N=512,为例,详细分析一下上述计算过程的workflow:

  1. 在 Global Memory 中分别为矩阵A,B,C分配存储空间.
  2. 由于矩阵C中每个元素的计算均相互独立, 因此在并行度映射中让每个thread 对应矩阵C中 1 个元素的计算.
  3. 执行配置 (execution configuration)中 gridSize 和 blockSize 均有 x(列向)、y(行向)两个维度, 其中

图片图片图片图片

nsys 记录 的 naive 版本的 profiling

二、GEMM的优化探究

前文仅仅在功能上实现了 GEMM,性能上还远远不及预期,本节将主要研究 GEMM 性能上的优化。

2.1 矩阵分块利用Shared Memory

上述的计算需要两次Global Memory的load才能完成一次乘累加运算,计算访存比极低,没有有效的数据复用。所以可以用 Shared Memory 来减少重复的内存读取。

首先把矩阵C等分为BMxBN大小的分块,每个分块由一个 Block 计算,其中每个Thread负责计算矩阵C中的TMxTN个元素。之后计算所需的数据全部从 smem 中读取,就消除了一部分重复的A,B矩阵内存读取。考虑到 Shared Memory 容量有限,可以在K维上每次读取BK大小的分块,这样的循环一共需要K / BK次以完成整个矩阵乘法操作,即可得到 Block 的结果。其过程如下图所示:

图片

利用 Shared Memory 优化后,对每一个分块,可得:

由上式可知BM和BN越大,计算访存比越高,性能就会越好。但是由于 Shared Memory 容量的限制(V100 1个SM仅96KB),而一个Block需要占用 BK * (BM + BN) * 4 Bytes大小。

TM和TN的取值也受到两方面限制,一方面是线程数的限制,一个Block中有BM / TM * BN / TN个线程,这个数字不能超过1024,且不能太高防止影响SM内Block间的并行;另一方面是寄存器数目的限制,一个线程至少需要TM * TN个寄存器用于存放矩阵C的部分和,再加上一些其它的寄存器,所有的寄存器数目不能超过256,且不能太高防止影响SM内同时并行的线程数目。

最终选取 BM = BN = 128,BK = 8,TM = TN = 8,则此时计算访存比为32。根据V100的理论算力15.7TFLOPS,可得 15.7TFLOPS/32 = 490GB/s,根据实测的HBM带宽为763GB/s,可知此时带宽不再会限制计算性能。

根据以上分析,kernel 函数实现过程如下,完整代码参见 sgemm_v1.cu,主要步骤包括:

图片图片

A B 矩阵分块的线程索引关系

确定好单个block的执行过程,接下来需要确定多block处理的不同分块在Global Memory中的对应关系,仍然以A为例进行说明。由于分块沿着行的方向移动,那么首先需要确定行号,根据 Grid 的二维全局线性索引关系,by * BM 表示该分块的起始行号,同时我们已知load_a_smem_m 为分块内部的行号,因此全局的行号为load_a_gmem_m = by * BM + load_a_smem_m 。由于分块沿着行的方向移动,因此列是变化的,需要在循环内部计算,同样也是先计算起始列号bk * BK 加速分块内部列号load_a_smem_k 得到 load_a_gmem_k = bk * BK + load_a_smem_k ,由此我们便可以确定了分块在原始数据中的位置OFFSET(load_a_gmem_m, load_a_gmem_k, K) 。同理可分析矩阵分块 的情况,不再赘述。

图片图片

计算完后,还需要将其存入 Global Memory 中,这就需要计算其在 Global Memory 中的对应关系。由于存在更小的分块,则行和列均由3部分构成:全局行号store_c_gmem_m 等于大分块的起始行号by * BM+小分块的起始行号ty * TM+小分块内部的相对行号 i 。列同理。

__global__ void sgemm_V1(
    float * __restrict__ a, float * __restrict__ b, float * __restrict__ c,
    const int M, const int N, const int K) {

    const int BM = 128;
    const int BN = 128;
    const int BK = 8;
    const int TM = 8;
    const int TN = 8;

    const int bx = blockIdx.x;
    const int by = blockIdx.y;
    const int tx = threadIdx.x;
    const int ty = threadIdx.y;
    const int tid = ty * blockDim.x + tx;

    __shared__ float s_a[BM][BK];
    __shared__ float s_b[BK][BN];

    float r_c[TM][TN] = {0.0};

    int load_a_smem_m = tid >> 1;  // tid/2, row of s_a
    int load_a_smem_k = (tid & 1) << 2;  // (tid % 2 == 0) ? 0 : 4, col of s_a
    int load_b_smem_k = tid >> 5;   // tid/32, row of s_b
    int load_b_smem_n = (tid & 31) << 2;  // (tid % 32) * 4, col of s_b

    int load_a_gmem_m = by * BM + load_a_smem_m;  // global row of a
    int load_b_gmem_n = bx * BN + load_b_smem_n;  // global col of b

    for (int bk = 0; bk < (K + BK - 1) / BK; bk++) {
        int load_a_gmem_k = bk * BK + load_a_smem_k;   // global col of a
        int load_a_gmem_addr = OFFSET(load_a_gmem_m, load_a_gmem_k, K);
        FLOAT4(s_a[load_a_smem_m][load_a_smem_k]) = FLOAT4(a[load_a_gmem_addr]);
        int load_b_gmem_k = bk * BK + load_b_smem_k;   // global row of b
        int load_b_gmem_addr = OFFSET(load_b_gmem_k, load_b_gmem_n, N);
        FLOAT4(s_b[load_b_smem_k][load_b_smem_n]) = FLOAT4(b[load_b_gmem_addr]);
        __syncthreads();

        #pragma unroll
        for (int k = 0; k < BK; k++) {
            #pragma unroll
            for (int m = 0; m < TM; m++) {
                #pragma unroll
                for (int n = 0; n < TN; n++) {
                    int comp_a_smem_m = ty * TM + m;
                    int comp_b_smem_n = tx * TN + n;
                    r_c[m][n] += s_a[comp_a_smem_m][k] * s_b[k][comp_b_smem_n];
                }
            }
        }

        __syncthreads();
    }

    #pragma unroll
    for (int i = 0; i < TM; i++) {
        int store_c_gmem_m = by * BM + ty * TM + i;
        #pragma unroll
        for (int j = 0; j < TN; j += 4) {
            int store_c_gmem_n = bx * BN + tx * TN + j;
            int store_c_gmem_addr = OFFSET(store_c_gmem_m, store_c_gmem_n, N);
            FLOAT4(c[store_c_gmem_addr]) = FLOAT4(r_c[i][j]);
        }
    }
}

计算结果如下,性能达到了理论峰值性能的51.7%:

M N K =    128    128   1024, Time =   0.00031578   0.00031727   0.00032288 s, AVG Performance =    98.4974 Gflops
M N K =    192    192   1024, Time =   0.00031638   0.00031720   0.00031754 s, AVG Performance =   221.6661 Gflops
M N K =    256    256   1024, Time =   0.00031488   0.00031532   0.00031606 s, AVG Performance =   396.4287 Gflops
M N K =    384    384   1024, Time =   0.00031686   0.00031814   0.00032080 s, AVG Performance =   884.0425 Gflops
M N K =    512    512   1024, Time =   0.00031814   0.00032007   0.00032493 s, AVG Performance =  1562.1563 Gflops
M N K =    768    768   1024, Time =   0.00032397   0.00034419   0.00034848 s, AVG Performance =  3268.5245 Gflops
M N K =   1024   1024   1024, Time =   0.00034570   0.00034792   0.00035331 s, AVG Performance =  5748.3952 Gflops
M N K =   1536   1536   1024, Time =   0.00068797   0.00068983   0.00069094 s, AVG Performance =  6523.3424 Gflops
M N K =   2048   2048   1024, Time =   0.00136173   0.00136552   0.00136899 s, AVG Performance =  5858.5604 Gflops
M N K =   3072   3072   1024, Time =   0.00271910   0.00273115   0.00274006 s, AVG Performance =  6590.6331 Gflops
M N K =   4096   4096   1024, Time =   0.00443805   0.00445964   0.00446883 s, AVG Performance =  7175.4698 Gflops
M N K =   6144   6144   1024, Time =   0.00917891   0.00950608   0.00996963 s, AVG Performance =  7574.0999 Gflops
M N K =   8192   8192   1024, Time =   0.01628838   0.01645271   0.01660790 s, AVG Performance =  7779.8733 Gflops
M N K =  12288  12288   1024, Time =   0.03592557   0.03597434   0.03614323 s, AVG Performance =  8005.7066 Gflops
M N K =  16384  16384   1024, Time =   0.06304122   0.06306373   0.06309302 s, AVG Performance =  8118.7715 Gflops

下面仍以M=512,K=512,N=512为例,分析一下结果。首先通过 profiling 可以看到 Shared Memory 占用为 8192 bytes,这与理论上(128+128)X8X4完全一致。

图片nsys 记录 的 V1 版本的 profiling

profiling 显示 Occupancy 为 12.5%,可以通过 cuda-calculator 加以印证,该例中 threads per block = 256, Registers per thread = 136, 由此可以计算得到每个SM中活跃的 warp 为8,而对于V100,每个SM中的 warp 总数为64,因此 Occupancy 为 8/64 = 12.5%。

2.2 解决 Bank Conflict 问题

上节通过利用 Shared Memory 大幅提高了访存效率,进而提高了性能,本节将进一步优化 Shared Memory 的使用。

Shared Memory一共划分为32个Bank,每个Bank的宽度为4 Bytes,如果需要访问同一个Bank的多个数据,就会发生Bank Conflict。例如一个Warp的32个线程,如果访问的地址分别为0、4、8、...、124,就不会发生Bank Conflict,只占用Shared Memory一拍的时间;如果访问的地址为0、8、16、...、248,这样一来地址0和地址128对应的数据位于同一Bank、地址4和地址132对应的数据位于同一Bank,以此类推,那么就需要占用Shared Memory两拍的时间才能读出。

有 Bank Conflict VS 无 Bank Conflict

再看 V1 版本计算部分的三层循环,每次从Shared memory中取矩阵A的长度为TM的向量和矩阵B的长度为TN的向量,这两个向量做外积并累加到部分和中,一次外积共TM * TN次乘累加,一共需要循环BK次取数和外积。

接下来分析从Shared Memory load的过程中存在的Bank Conflict:

i) 取矩阵A需要取一个列向量,而矩阵A在Shared Memory中是按行存储的;

ii) 在TM = TN = 8的情况下,无论矩阵A还是矩阵B,从Shared Memory中取数时需要取连续的8个数,即便用LDS.128指令一条指令取四个数,也需要两条指令,由于一个线程的两条load指令的地址是连续的,那么同一个Warp不同线程的同一条load指令的访存地址就是被间隔开的,便存在着 Bank Conflict。

为了解决上述的两点Shared Memory的Bank Conflict,采用了一下两点优化:

i) 为矩阵A分配Shared Memory时形状分配为[BK][BM],即让矩阵A在Shared Memory中按列存储

ii) 将原本每个线程负责计算的TM * TN的矩阵C,划分为下图中这样的两块TM/2 * TN的矩阵C,由于TM/2=4,一条指令即可完成A的一块的load操作,两个load可同时进行。

kernel 函数的核心部分实现如下,完整代码见 sgemm_v2.cu 。

__shared__ float s_a[BK][BM];
    __shared__ float s_b[BK][BN];

    float r_load_a[4];
    float r_load_b[4];
    float r_comp_a[TM];
    float r_comp_b[TN];
    float r_c[TM][TN] = {0.0};

    int load_a_smem_m = tid >> 1;
    int load_a_smem_k = (tid & 1) << 2;
    int load_b_smem_k = tid >> 5;
    int load_b_smem_n = (tid & 31) << 2;

    int load_a_gmem_m = by * BM + load_a_smem_m;
    int load_b_gmem_n = bx * BN + load_b_smem_n;

    for (int bk = 0; bk < (K + BK - 1) / BK; bk++) {

        int load_a_gmem_k = bk * BK + load_a_smem_k;
        int load_a_gmem_addr = OFFSET(load_a_gmem_m, load_a_gmem_k, K);
        int load_b_gmem_k = bk * BK + load_b_smem_k;
        int load_b_gmem_addr = OFFSET(load_b_gmem_k, load_b_gmem_n, N);
        FLOAT4(r_load_a[0]) = FLOAT4(a[load_a_gmem_addr]);
        FLOAT4(r_load_b[0]) = FLOAT4(b[load_b_gmem_addr]);

        s_a[load_a_smem_k    ][load_a_smem_m] = r_load_a[0];
        s_a[load_a_smem_k + 1][load_a_smem_m] = r_load_a[1];
        s_a[load_a_smem_k + 2][load_a_smem_m] = r_load_a[2];
        s_a[load_a_smem_k + 3][load_a_smem_m] = r_load_a[3];
        FLOAT4(s_b[load_b_smem_k][load_b_smem_n]) = FLOAT4(r_load_b[0]);

        __syncthreads();

        #pragma unroll
        for (int tk = 0; tk < BK; tk++) {
            FLOAT4(r_comp_a[0]) = FLOAT4(s_a[tk][ty * TM / 2         ]);
            FLOAT4(r_comp_a[4]) = FLOAT4(s_a[tk][ty * TM / 2 + BM / 2]);
            FLOAT4(r_comp_b[0]) = FLOAT4(s_b[tk][tx * TN / 2         ]);
            FLOAT4(r_comp_b[4]) = FLOAT4(s_b[tk][tx * TN / 2 + BN / 2]);

            #pragma unroll
            for (int tm = 0; tm < TM; tm++) {
                #pragma unroll
                for (int tn = 0; tn < TN; tn++) {
                    r_c[tm][tn] += r_comp_a[tm] * r_comp_b[tn];
                }
            }
        }

        __syncthreads();
    }

    #pragma unroll
    for (int i = 0; i < TM / 2; i++) {
        int store_c_gmem_m = by * BM + ty * TM / 2 + i;
        int store_c_gmem_n = bx * BN + tx * TN / 2;
        int store_c_gmem_addr = OFFSET(store_c_gmem_m, store_c_gmem_n, N);
        FLOAT4(c[store_c_gmem_addr]) = FLOAT4(r_c[i][0]);
        FLOAT4(c[store_c_gmem_addr + BN / 2]) = FLOAT4(r_c[i][4]);
    }
    #pragma unroll
    for (int i = 0; i < TM / 2; i++) {
        int store_c_gmem_m = by * BM + BM / 2 + ty * TM / 2 + i;
        int store_c_gmem_n = bx * BN + tx * TN / 2;
        int store_c_gmem_addr = OFFSET(store_c_gmem_m, store_c_gmem_n, N);
        FLOAT4(c[store_c_gmem_addr]) = FLOAT4(r_c[i + TM / 2][0]);
        FLOAT4(c[store_c_gmem_addr + BN / 2]) = FLOAT4(r_c[i + TM / 2][4]);
    }

结果如下,相对未解决 Bank Conflict 版(V1) 性能提高了 14.4%,达到了理论峰值的74.3%。

M N K =    128    128   1024, Time =   0.00029699   0.00029918   0.00030989 s, AVG Performance =   104.4530 Gflops
M N K =    192    192   1024, Time =   0.00029776   0.00029828   0.00029882 s, AVG Performance =   235.7252 Gflops
M N K =    256    256   1024, Time =   0.00029485   0.00029530   0.00029619 s, AVG Performance =   423.2949 Gflops
M N K =    384    384   1024, Time =   0.00029734   0.00029848   0.00030090 s, AVG Performance =   942.2843 Gflops
M N K =    512    512   1024, Time =   0.00029853   0.00029945   0.00030070 s, AVG Performance =  1669.7479 Gflops
M N K =    768    768   1024, Time =   0.00030458   0.00032467   0.00032790 s, AVG Performance =  3465.1038 Gflops
M N K =   1024   1024   1024, Time =   0.00032406   0.00032494   0.00032621 s, AVG Performance =  6155.0281 Gflops
M N K =   1536   1536   1024, Time =   0.00047990   0.00048224   0.00048461 s, AVG Performance =  9331.3912 Gflops
M N K =   2048   2048   1024, Time =   0.00094426   0.00094636   0.00094992 s, AVG Performance =  8453.4569 Gflops
M N K =   3072   3072   1024, Time =   0.00187866   0.00188096   0.00188538 s, AVG Performance =  9569.5816 Gflops
M N K =   4096   4096   1024, Time =   0.00312589   0.00319050   0.00328147 s, AVG Performance = 10029.7885 Gflops
M N K =   6144   6144   1024, Time =   0.00641280   0.00658940   0.00703498 s, AVG Performance = 10926.6372 Gflops
M N K =   8192   8192   1024, Time =   0.01101130   0.01116194   0.01122950 s, AVG Performance = 11467.5446 Gflops
M N K =  12288  12288   1024, Time =   0.02464854   0.02466705   0.02469344 s, AVG Performance = 11675.4946 Gflops
M N K =  16384  16384   1024, Time =   0.04385955   0.04387468   0.04388355 s, AVG Performance = 11669.5995 Gflops

分析一下 profiling 可以看到 Static Shared Memory 仍然是使用了8192 Bytes,奇怪的的是,Shared Memory executed 却翻倍变成了 16384 Bytes(知友如果知道原因可以告诉我一下)。

图片

2.3 流水并行化:Double Buffering

Double Buffering,即双缓冲,即通过增加buffer的方式,使得 访存-计算 的串行模式流水线化,以减少等待时间,提高计算效率,其原理如下图所示:

Single Buffering VS Double Buffering

具体到 GEMM 任务中来,就是需要两倍的Shared Memory,之前只需要BK * (BM + BN) * 4 Bytes的Shared Memory,采用Double Buffering之后需要2BK * (BM + BN) * 4 Bytes的Shared Memory,然后使其 pipeline 流动起来。

代码核心部分如下所示,完整代码参见 sgemm_v3.cu 。有以下几点需要注意:

1)主循环从bk = 1 开始,第一次数据加载在主循环之前,最后一次计算在主循环之后,这是pipeline 的特点决定的;

2)由于计算和下一次访存使用的Shared Memory不同,因此主循环中每次循环只需要一次__syncthreads()即可

3)由于GPU不能向CPU那样支持乱序执行,主循环中需要先将下一次循环计算需要的Gloabal Memory中的数据load 到寄存器,然后进行本次计算,之后再将load到寄存器中的数据写到Shared Memory,这样在LDG指令向Global Memory做load时,不会影响后续FFMA及其它运算指令的 launch 执行,也就达到了Double Buffering的目的。

__shared__ float s_a[2][BK][BM];
    __shared__ float s_b[2][BK][BN];

    float r_load_a[4];
    float r_load_b[4];
    float r_comp_a[TM];
    float r_comp_b[TN];
    float r_c[TM][TN] = {0.0};

    int load_a_smem_m = tid >> 1;
    int load_a_smem_k = (tid & 1) << 2;
    int load_b_smem_k = tid >> 5;
    int load_b_smem_n = (tid & 31) << 2;

    int load_a_gmem_m = by * BM + load_a_smem_m;
    int load_b_gmem_n = bx * BN + load_b_smem_n;

    {
        int load_a_gmem_k = load_a_smem_k;
        int load_a_gmem_addr = OFFSET(load_a_gmem_m, load_a_gmem_k, K);
        int load_b_gmem_k = load_b_smem_k;
        int load_b_gmem_addr = OFFSET(load_b_gmem_k, load_b_gmem_n, N);
        FLOAT4(r_load_a[0]) = FLOAT4(a[load_a_gmem_addr]);
        FLOAT4(r_load_b[0]) = FLOAT4(b[load_b_gmem_addr]);

        s_a[0][load_a_smem_k    ][load_a_smem_m] = r_load_a[0];
        s_a[0][load_a_smem_k + 1][load_a_smem_m] = r_load_a[1];
        s_a[0][load_a_smem_k + 2][load_a_smem_m] = r_load_a[2];
        s_a[0][load_a_smem_k + 3][load_a_smem_m] = r_load_a[3];
        FLOAT4(s_b[0][load_b_smem_k][load_b_smem_n]) = FLOAT4(r_load_b[0]);
    }

    for (int bk = 1; bk < (K + BK - 1) / BK; bk++) {

        int smem_sel = (bk - 1) & 1;
        int smem_sel_next = bk & 1;

        int load_a_gmem_k = bk * BK + load_a_smem_k;
        int load_a_gmem_addr = OFFSET(load_a_gmem_m, load_a_gmem_k, K);
        int load_b_gmem_k = bk * BK + load_b_smem_k;
        int load_b_gmem_addr = OFFSET(load_b_gmem_k, load_b_gmem_n, N);
        FLOAT4(r_load_a[0]) = FLOAT4(a[load_a_gmem_addr]);
        FLOAT4(r_load_b[0]) = FLOAT4(b[load_b_gmem_addr]);

        #pragma unroll
        for (int tk = 0; tk < BK; tk++) {
            FLOAT4(r_comp_a[0]) = FLOAT4(s_a[smem_sel][tk][ty * TM / 2         ]);
            FLOAT4(r_comp_a[4]) = FLOAT4(s_a[smem_sel][tk][ty * TM / 2 + BM / 2]);
            FLOAT4(r_comp_b[0]) = FLOAT4(s_b[smem_sel][tk][tx * TN / 2         ]);
            FLOAT4(r_comp_b[4]) = FLOAT4(s_b[smem_sel][tk][tx * TN / 2 + BN / 2]);

            #pragma unroll
            for (int tm = 0; tm < TM; tm++) {
                #pragma unroll
                for (int tn = 0; tn < TN; tn++) {
                    r_c[tm][tn] += r_comp_a[tm] * r_comp_b[tn];
                }
            }
        }

        s_a[smem_sel_next][load_a_smem_k    ][load_a_smem_m] = r_load_a[0];
        s_a[smem_sel_next][load_a_smem_k + 1][load_a_smem_m] = r_load_a[1];
        s_a[smem_sel_next][load_a_smem_k + 2][load_a_smem_m] = r_load_a[2];
        s_a[smem_sel_next][load_a_smem_k + 3][load_a_smem_m] = r_load_a[3];
        FLOAT4(s_b[smem_sel_next][load_b_smem_k][load_b_smem_n]) = FLOAT4(r_load_b[0]);

        __syncthreads();
    }

    #pragma unroll
    for (int tk = 0; tk < BK; tk++) {
        FLOAT4(r_comp_a[0]) = FLOAT4(s_a[1][tk][ty * TM / 2         ]);
        FLOAT4(r_comp_a[4]) = FLOAT4(s_a[1][tk][ty * TM / 2 + BM / 2]);
        FLOAT4(r_comp_b[0]) = FLOAT4(s_b[1][tk][tx * TN / 2         ]);
        FLOAT4(r_comp_b[4]) = FLOAT4(s_b[1][tk][tx * TN / 2 + BN / 2]);

        #pragma unroll
        for (int tm = 0; tm < TM; tm++) {
            #pragma unroll
            for (int tn = 0; tn < TN; tn++) {
                r_c[tm][tn] += r_comp_a[tm] * r_comp_b[tn];
            }
        }
    }

    #pragma unroll
    for (int i = 0; i < TM / 2; i++) {
        int store_c_gmem_m = by * BM + ty * TM / 2 + i;
        int store_c_gmem_n = bx * BN + tx * TN / 2;
        int store_c_gmem_addr = OFFSET(store_c_gmem_m, store_c_gmem_n, N);
        FLOAT4(c[store_c_gmem_addr]) = FLOAT4(r_c[i][0]);
        FLOAT4(c[store_c_gmem_addr + BN / 2]) = FLOAT4(r_c[i][4]);
    }
    #pragma unroll
    for (int i = 0; i < TM / 2; i++) {
        int store_c_gmem_m = by * BM + BM / 2 + ty * TM / 2 + i;
        int store_c_gmem_n = bx * BN + tx * TN / 2;
        int store_c_gmem_addr = OFFSET(store_c_gmem_m, store_c_gmem_n, N);
        FLOAT4(c[store_c_gmem_addr]) = FLOAT4(r_c[i + TM / 2][0]);
        FLOAT4(c[store_c_gmem_addr + BN / 2]) = FLOAT4(r_c[i + TM / 2][4]);
    }

性能如下所示,达到了理论峰值的 80.6%。

M N K =    128    128   1024, Time =   0.00024000   0.00024240   0.00025792 s, AVG Performance =   128.9191 Gflops
M N K =    192    192   1024, Time =   0.00024000   0.00024048   0.00024125 s, AVG Performance =   292.3840 Gflops
M N K =    256    256   1024, Time =   0.00024029   0.00024114   0.00024272 s, AVG Performance =   518.3728 Gflops
M N K =    384    384   1024, Time =   0.00024070   0.00024145   0.00024198 s, AVG Performance =  1164.8394 Gflops
M N K =    512    512   1024, Time =   0.00024173   0.00024237   0.00024477 s, AVG Performance =  2062.9786 Gflops
M N K =    768    768   1024, Time =   0.00024291   0.00024540   0.00026010 s, AVG Performance =  4584.3820 Gflops
M N K =   1024   1024   1024, Time =   0.00024534   0.00024631   0.00024941 s, AVG Performance =  8119.7302 Gflops
M N K =   1536   1536   1024, Time =   0.00045712   0.00045780   0.00045872 s, AVG Performance =  9829.5167 Gflops
M N K =   2048   2048   1024, Time =   0.00089632   0.00089970   0.00090656 s, AVG Performance =  8891.8924 Gflops
M N K =   3072   3072   1024, Time =   0.00177891   0.00178289   0.00178592 s, AVG Performance = 10095.9883 Gflops
M N K =   4096   4096   1024, Time =   0.00309763   0.00310057   0.00310451 s, AVG Performance = 10320.6843 Gflops
M N K =   6144   6144   1024, Time =   0.00604826   0.00619887   0.00663078 s, AVG Performance = 11615.0253 Gflops
M N K =   8192   8192   1024, Time =   0.01031738   0.01045051   0.01048861 s, AVG Performance = 12248.2036 Gflops
M N K =  12288  12288   1024, Time =   0.02283978   0.02285837   0.02298272 s, AVG Performance = 12599.3212 Gflops
M N K =  16384  16384   1024, Time =   0.04043287   0.04044823   0.04046151 s, AVG Performance = 12658.1556 Gflops

从 profiling 可以看到双倍的 Shared Memory 的占用

三、cuBLAS 实现方式探究

本节我们将认识CUDA的标准库——cuBLAS, 即NVIDIA版本的基本线性代数子程序 (Basic Linear Algebra Subprograms, BLAS) 规范实现代码。它支持 Level 1 (向量与向量运算) ,Level 2 (向量与矩阵运算) ,Level 3 (矩阵与矩阵运算) 级别的标准矩阵运算。

cuBLAS/CUTLASS GEMM的基本过程

如上图所示,计算过程分解成线程块片(thread block tile)、线程束片(warp tile)和线程片(thread tile)的层次结构并将AMP的策略应用于此层次结构来高效率的完成基于GPU的拆分成tile的GEMM。这个层次结构紧密地反映了NVIDIA CUDA编程模型。可以看到从global memory到shared memory的数据移动(矩阵到thread block tile);从shared memory到寄存器的数据移动(thread block tile到warp tile);从寄存器到CUDA core的计算(warp tile到thread tile)。

cuBLAS 实现了单精度矩阵乘的函数cublasSgemm,其主要参数如下:

cublasStatus_t cublasSgemm( cublasHandle_t handle, // 调用 cuBLAS 库时的句柄 
                            cublasOperation_t transa, // A 矩阵是否需要转置 
                            cublasOperation_t transb, // B 矩阵是否需要转置 
                            int m, // A 的行数 
                            int n, // B 的列数 
                            int k, // A 的列数 
                            const float *alpha, // 系数 α, host or device pointer 
                            const float *A, // 矩阵 A 的指针,device pointer 
                            int lda, // 矩阵 A 的主维,if A 转置, lda = max(1, k), else max(1, m) 
                            const float *B, // 矩阵 B 的指针, device pointer 
                            int ldb, // 矩阵 B 的主维,if B 转置, ldb = max(1, n), else max(1, k) 
                            const float *beta, // 系数 β, host or device pointer 
                            float *C, // 矩阵 C 的指针,device pointer 
                            int ldc // 矩阵 C 的主维,ldc >= max(1, m) );

调用方式如下:

cublasHandle_t cublas_handle;
cublasCreate(&cublas_handle);
float cublas_alpha = 1.0;
float cublas_beta = 0;
cublasSgemm(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, N, M, K, &cublas_alpha, d_b, N, d_a, K, &cublas_beta, d_c, N);

性能如下所示,达到了理论峰值的 82.4%。

M N K =    128    128   1024, Time =   0.00002704   0.00003634   0.00010822 s, AVG Performance =   860.0286 Gflops
M N K =    192    192   1024, Time =   0.00003155   0.00003773   0.00007267 s, AVG Performance =  1863.6689 Gflops
M N K =    256    256   1024, Time =   0.00003917   0.00004524   0.00007747 s, AVG Performance =  2762.9438 Gflops
M N K =    384    384   1024, Time =   0.00005318   0.00005978   0.00009120 s, AVG Performance =  4705.0655 Gflops
M N K =    512    512   1024, Time =   0.00008326   0.00010280   0.00013840 s, AVG Performance =  4863.9646 Gflops
M N K =    768    768   1024, Time =   0.00014278   0.00014867   0.00018816 s, AVG Performance =  7567.1560 Gflops
M N K =   1024   1024   1024, Time =   0.00023485   0.00024460   0.00028150 s, AVG Performance =  8176.5614 Gflops
M N K =   1536   1536   1024, Time =   0.00046474   0.00047607   0.00051181 s, AVG Performance =  9452.3201 Gflops
M N K =   2048   2048   1024, Time =   0.00077930   0.00087862   0.00092307 s, AVG Performance =  9105.2126 Gflops
M N K =   3072   3072   1024, Time =   0.00167904   0.00168434   0.00171114 s, AVG Performance = 10686.6837 Gflops
M N K =   4096   4096   1024, Time =   0.00289619   0.00291068   0.00295904 s, AVG Performance = 10994.0128 Gflops
M N K =   6144   6144   1024, Time =   0.00591766   0.00594586   0.00596915 s, AVG Performance = 12109.2611 Gflops
M N K =   8192   8192   1024, Time =   0.01002384   0.01017465   0.01028435 s, AVG Performance = 12580.2896 Gflops
M N K =  12288  12288   1024, Time =   0.02231159   0.02233805   0.02245619 s, AVG Performance = 12892.7969 Gflops
M N K =  16384  16384   1024, Time =   0.03954650   0.03959291   0.03967242 s, AVG Performance = 12931.6086 Gflops

由此可以对比以上各种方法的性能情况,可见手动实现的性能已接近于官方的性能,如下:


责任编辑:张燕妮 来源: 自动驾驶之心
相关推荐

2017-06-26 09:15:39

SQL数据库基础

2012-02-29 00:49:06

Linux学习

2011-06-07 10:33:11

Android Activity

2013-06-06 13:42:48

OSPF入门配置

2010-02-06 15:31:18

ibmdwAndroid

2009-07-22 14:55:16

ibmdwAndroid

2021-02-21 22:53:01

CanvasHTML5JavaScript

2019-07-02 14:17:18

API网关网关流量

2017-05-09 08:48:44

机器学习

2016-12-08 22:39:40

Android

2021-09-01 22:58:22

Canvas标签

2022-06-10 08:17:52

HashMap链表红黑树

2022-10-20 08:02:29

ELFRTOSSymbol

2021-11-29 14:18:05

Nuxt3静态Nuxt2

2021-12-12 18:15:06

Python并发编程

2017-01-03 16:57:58

2010-11-08 10:20:18

2017-03-25 20:30:15

2024-02-26 08:52:20

Python传递函数参数参数传递类型

2022-09-02 15:11:18

开发工具
点赞
收藏

51CTO技术栈公众号