2024年自动驾驶标注行业是否会被世界模型所颠覆?

人工智能 智能汽车
无论是2D-3D的联合障碍物标注,还是基于重建点云的clip 的车道线或者Occpuancy 任务标注都还是太贵了

本文经自动驾驶之心公众号授权转载,转载请联系出处。

1.数据标注面临的问题(特别是基于BEV 任务)

随着基于BEV transformer 任务的兴起,随之带来的是对数据的依赖变的越来越重,基于BEV 任务的标注也变得越来越重要。目前来看无论是2D-3D的联合障碍物标注,还是基于重建点云的clip 的车道线或者Occpuancy 任务标注都还是太贵了(和2D标注任务相比,贵了很多)。当然业界里面也有很多基于大模型等的半自动化,或者自动化标注的研究。还有一方面是自动驾驶的数据采集,周期太过于漫长,还涉及到数据合规能一系列问题。比如,你想采集一个平板车跨相机的场景,或者一个车道线城市多变少,少变多的场景,就需要采集人员专项去构建这样的场景。

2.24年会是世界模型的奇点时刻吗?

世界模型这个概念太过于大,或者说成传感器仿真。在特斯拉AI day 上第一次见识到仿真对标注的颠覆

图1: 特斯拉的自动化标注效果图片图二 4D 重建的效果

当时看到之后是震惊, 还是震惊!就像当成特斯拉的BEV 一样颠覆。随着越来越多的研究人员在这个方向不断发力,有很多优秀的研究呈现出来。UniSim 的自动驾驶仿真系统, 具备 重放,动态物体行为控制, 自由视角渲染等功能(这应该是每一个训练模型的同学都想拥有的) 。

还可以对lidar 进行仿真。

具体见: https://zhuanlan.zhihu.com/p/636695025. 这个方向还有更多的的类似的研究。

NeuRAD: Neural Rendering for Autonomous Driving

DrivingGaussian: Composite Gaussian Splatting for Surrounding Dynamic Autonomous Driving Scenes 以上的方法都大多和Nerf 相关,整个pipeline 都比较重。还有另一个方向,基于扩散的研究方向。目前也取得了不错的研究。

BEVControl: Accurately Controlling Street-view Elements withMulti-perspective Consistency via BEV Sketch Layout

BEVControl: Accurately Controlling Street-view Elements withMulti-perspective Consistency via BEV Sketch Layout

< MagDriver MAGIC DRIVE : STREET VIEW GENERATION WITH DIVERSE 3D GEOMETRY CONTROL >

技术发展太快了,传感器仿真的门槛正在降低,有可能24年自动驾驶标注行业会出现一些颠覆性的产品出来!

责任编辑:张燕妮 来源: 自动驾驶之心
相关推荐

2024-01-09 09:24:18

自动驾驶人才

2024-10-16 09:50:32

2023-10-30 09:42:29

自动驾驶模型

2023-12-04 09:33:00

自动驾驶视觉

2022-01-18 10:51:09

自动驾驶数据人工智能

2023-02-13 12:15:41

自动驾驶算法

2023-09-26 13:33:27

AI自动驾驶

2024-03-11 10:08:12

驾驶模型

2022-10-27 10:18:25

自动驾驶

2023-12-08 10:10:56

模型论文调研

2021-11-18 09:50:35

自动驾驶辅助驾驶人工智能

2022-03-21 18:21:34

自动驾驶卡车智能

2023-01-04 10:02:53

强化学习自动驾驶

2022-07-12 09:42:10

自动驾驶技术

2021-02-01 13:53:40

自动驾驶技术交通

2024-07-11 11:40:18

2024-12-10 10:00:00

自动驾驶数据

2018-10-24 14:16:33

自动驾驶道路测试牌照
点赞
收藏

51CTO技术栈公众号