面试官:分库分表后如何生成全局ID?

数据库 其他数据库
数据库自增 ID 只适用于单机数据库环境,而对于分库、分表、数据分片来说,自增 ID 不具备唯一性,所以要要使用雪花 ID 来替代数据库自增 ID。但雪花算法依然存在一些问题,例如时间回拨的问题。

分库分表后就不能使用自增 ID 来作为表的主键了,因为数据库自增 ID 只适用于单机环境,但如果是分布式环境,是将数据库进行分库、分表或数据库分片等操作时,那么数据库自增 ID 就会生成重复 ID,从而导致业务查询上的问题。所以此时,可以使用 UUID 或雪花 ID 来作为全局主键 ID。

1、UUID作为全局ID

UUID(Universally Unique Identifier)是一种全局唯一标识符,它保证在空间和时间上的唯一性。通常由 128 位的数字组成,采用 32 位的十六进制数表示,格式为 8-4-4-4-12 这样的 36 个字符(32 个字母数字字符和 4 个短横线),例如 550e8400-e29b-41d4-a716-446655440000。UUID 在 Java 中的实现如下:

import java.util.UUID;

public class UUIDExample {
    public static void main(String[] args) {
        // Generate a random UUID
        UUID uuid = UUID.randomUUID();
        System.out.println("Random UUID: " + uuid);

        // Convert UUID to string
        String uuidString = uuid.toString();
        System.out.println("UUID as string: " + uuidString);

        // Convert string to UUID
        UUID parsedUuid = UUID.fromString(uuidString);
        System.out.println("Parsed UUID: " + parsedUuid);
    }
}

UUID 存在的问题

虽然 UUID 可以保证全局唯一,但并不推荐使用 UUID 来作为分库分表后的主键 ID,因为 UUID 有两个问题:

  • UUID 太长,且生成效率较低。
  • UUID 没有任何业务含义,不连续且没有任何顺序可言。

2、雪花ID作为全局ID

雪花 ID(Snowflake ID)是一个用于分布式系统中生成唯一 ID 的算法,由 Twitter 公司提出。它的设计目标是在分布式环境下高效地生成全局唯一的 ID,具有一定的有序性。雪花 ID 的结构如下所示(共 64 位):

这四部分代表的含义:

  • 符号位:最高位是符号位,始终为 0,1 表示负数,0 表示正数,ID 都是正整数,所以固定为 0。
  • 时间戳部分:由 41 位组成,精确到毫秒级。可以使用该 41 位表示的时间戳来表示的时间可以使用 69 年。
  • 节点 ID 部分:由 10 位组成,用于表示机器节点的唯一标识符。在同一毫秒内,不同的节点生成的 ID 会有所不同。
  • 序列号部分:由 12 位组成,用于标识同一毫秒内生成的不同 ID 序列。在同一毫秒内,可以生成 4096 个不同的 ID。

Java 版雪花算法实现

接下来,我们来实现一个 Java 版的雪花算法:

public class SnowflakeIdGenerator {

    // 定义雪花 ID 的各部分位数
    private static final long TIMESTAMP_BITS = 41L;
    private static final long NODE_ID_BITS = 10L;
    private static final long SEQUENCE_BITS = 12L;
    // 定义起始时间戳(可根据实际情况调整)
    private static final long EPOCH = 1609459200000L;
    // 定义最大取值范围
    private static final long MAX_NODE_ID = (1L << NODE_ID_BITS) - 1;
    private static final long MAX_SEQUENCE = (1L << SEQUENCE_BITS) - 1;
    // 定义偏移量
    private static final long TIMESTAMP_SHIFT = NODE_ID_BITS + SEQUENCE_BITS;
    private static final long NODE_ID_SHIFT = SEQUENCE_BITS;
    private final long nodeId;
    private long lastTimestamp = -1L;
    private long sequence = 0L;
    public SnowflakeIdGenerator(long nodeId) {
        if (nodeId < 0 || nodeId > MAX_NODE_ID) {
            throw new IllegalArgumentException("Invalid node ID");
        }
        this.nodeId = nodeId;
    }
    public synchronized long generateId() {
        long currentTimestamp = timestamp();
        if (currentTimestamp < lastTimestamp) {
            throw new IllegalStateException("Clock moved backwards");
        }
        if (currentTimestamp == lastTimestamp) {
            sequence = (sequence + 1) & MAX_SEQUENCE;
            if (sequence == 0) {
                currentTimestamp = untilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0L;
        }
        lastTimestamp = currentTimestamp;
        return ((currentTimestamp - EPOCH) << TIMESTAMP_SHIFT) |
        (nodeId << NODE_ID_SHIFT) |
        sequence;
    }
    private long timestamp() {
        return System.currentTimeMillis();
    }
    private long untilNextMillis(long lastTimestamp) {
        long currentTimestamp = timestamp();
        while (currentTimestamp <= lastTimestamp) {
            currentTimestamp = timestamp();
        }
        return currentTimestamp;
    }
}

调用代码如下:

public class Main {
    public static void main(String[] args) {
        // 创建一个雪花 ID 生成器实例,传入节点 ID
        SnowflakeIdGenerator idGenerator = new SnowflakeIdGenerator(1);
        // 生成 ID
        long id = idGenerator.generateId();
        System.out.println(id);
    }
}

其中,nodeId 表示当前节点的唯一标识,可以根据实际情况进行设置。generateId 方法用于生成雪花 ID,采用同步方式确保线程安全。具体的生成逻辑遵循雪花 ID 的位运算规则,结合当前时间戳、节点 ID 和序列号生成唯一的 ID。

需要注意的是,示例中的时间戳获取方法使用了 System.currentTimeMillis(),根据实际需要可以替换为其他更精确的时间戳获取方式。同时,需要确保节点 ID 的唯一性,避免不同节点生成的 ID 重复。

雪花ID存在的问题

虽然雪花算法是一种被广泛采用的分布式唯一 ID 生成算法,但它也存在以下几个问题:

  • 时间回拨问题:雪花算法生成的 ID 依赖于系统的时间戳,要求系统的时钟必须是单调递增的。如果系统的时钟发生回拨,可能导致生成的 ID 重复。时间回拨是指系统的时钟在某个时间点之后突然往回走(人为设置),即出现了时间上的逆流情况。
  • 时钟回拨带来的可用性和性能问题:由于时间依赖性,当系统时钟发生回拨时,雪花算法需要进行额外的处理,如等待系统时钟追上上一次生成 ID 的时间戳或抛出异常。这种处理会对算法的可用性和性能产生一定影响。
  • 节点 ID 依赖问题:雪花算法需要为每个节点分配唯一的节点 ID 来保证生成的 ID 的全局唯一性。节点 ID 的分配需要有一定的管理和调度,特别是在动态扩容或缩容时,节点 ID 的管理可能较为复杂。

如何解决时间回拨问题?

百度 UidGenerator 框架中解决了时间回拨的问题,并且解决方案比较经典,所以咱们这里就来给大家分享一下百度 UidGenerator 是怎么解决时间回拨问题的?

UidGenerator 介绍:UidGenerator 是百度开源的一个分布式唯一 ID 生成器,它是基于 Snowflake 算法的改进版本。与传统的 Snowflake 算法相比,UidGenerator 在高并发场景下具有更好的性能和可用性。它的实现源码在:https://github.com/baidu/uid-generator

UidGenerator 是这样解决时间回拨问题的:UidGenerator 的每个实例中,都维护一个本地时钟缓存,用于记录当前时间戳。这个本地时钟会定期与系统时钟进行同步,如果检测到系统时钟往前走了(出现了时钟回拨),则将本地时钟调整为系统时钟。

小结

数据库自增 ID 只适用于单机数据库环境,而对于分库、分表、数据分片来说,自增 ID 不具备唯一性,所以要要使用雪花 ID 来替代数据库自增 ID。但雪花算法依然存在一些问题,例如时间回拨的问题,所以此时,可以使用雪花算法的改进框架,如百度的 UidGenerator 来作为全局 ID 的生成方案会比较好。

责任编辑:姜华 来源: Java中文社群
相关推荐

2024-11-22 15:32:19

2024-07-25 18:20:03

2017-07-19 16:25:07

数据库开发DB分库主键生成策略

2020-11-11 10:05:04

数据库分库分表美团面试

2024-10-07 08:52:59

分布式系统分布式 IDID

2024-02-22 17:02:09

IDUUID雪花算法

2015-08-13 10:29:12

面试面试官

2023-02-16 08:10:40

死锁线程

2018-03-14 09:49:35

数据库迁移

2024-02-20 14:10:55

系统缓存冗余

2024-03-18 14:06:00

停机Spring服务器

2021-07-06 07:08:18

管控数据数仓

2010-08-12 16:28:35

面试官

2024-04-03 00:00:00

Redis集群代码

2024-09-11 22:51:19

线程通讯Object

2023-11-20 10:09:59

2021-06-02 09:42:29

Node. js全局对象

2020-07-28 09:04:09

NewSQL分库分表

2020-07-30 17:59:34

分库分表SQL数据库

2024-04-26 12:01:10

ping命令断网
点赞
收藏

51CTO技术栈公众号