import pandas as pd
# Creating the data
data = {
"Date": ["2023/1/5", "2023/1/6", "2023/1/7", "2023/1/8", "2023/1/9", "2023/1/10",
"2023/1/12", "2023/1/13", "2023/1/14", "2023/1/15", "2023/1/16", "2023/1/17",
"2023/1/18", "2023/1/19", "2023/1/20", "2023/1/21", "2023/1/22", "2023/1/23",
"2023/1/24", "2023/1/25", "2023/1/26", "2023/1/27", "2023/1/28", "2023/1/29",
"2023/1/30"],
"Product": ["Almond Delight", "Best Brew Coffee", "Organic Tea", "Choco Cookies",
"Spicy Nuts", "Lemonade Juice", "Green Tea", "Energy Bar",
"Sparkling Water", "Granola Crunch", "Herbal Tea", "Nutty Bar",
"Fresh Lemon Juice", "Exotic Trail Mix", "Espresso", "Chocolate Biscuits",
"Mint Tea", "Savory Nuts", "Cold Brew Coffee", "Peanut Butter Cup",
"Fruit Tea", "Honey Almonds", "Iced Coffee", "Salted Peanuts", "Ginger Tea"],
"Category": ["Snacks", "Beverages", "Beverages", "Snacks", "Snacks", "Beverages",
"Beverages", "Snacks", "Beverages", "Snacks", "Beverages", "Snacks",
"Beverages", "Snacks", "Beverages", "Snacks", "Beverages", "Snacks",
"Beverages", "Snacks", "Beverages", "Snacks", "Beverages", "Snacks", "Beverages"],
"Quantity": [50.0, 30.0, 20.0, 80.0, 60.0, 40.0, 55.0, 45.0, 65.0, 30.0,
25.0, 40.0, 75.0, 55.0, 20.0, 50.0, 70.0, 65.0, 35.0, 45.0,
55.0, 50.0, 60.0, 70.0, 40.0],
"UnitPrice": [2.5, 3.0, 4.0, 1.5, 2.0, 3.5, 3.0, 2.5, 1.0, 3.5,
4.5, 2.0, 2.0, 2.8, 3.0, 1.5, 2.5, 2.2, 3.5, 2.5,
3.0, 2.5, 2.0, 1.8, 3.5],
"Country": ["USA", "Canada", "UK", "Australia", "India", "USA",
"Australia", "Canada", "India", "USA", "Canada", "UK",
"Australia", "India", "USA", "UK", "Australia", "Canada",
"India", "USA", "Canada", "UK", "Australia", "India", "USA"],
"TotalSales": [125.0, 90.0, 80.0, 120.0, 120.0, 140.0, 165.0, 112.5, 65.0, 105.0,
112.5, 80.0, 150.0, 154.0, 60.0, 75.0, 175.0, 143.0, 122.5, 112.5,
165.0, 125.0, 120.0, 126.0, 140.0]
}
# Creating the DataFrame
df = pd.DataFrame(data)
df.head()
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.