韩方认定,LK-99室温超导无法证明,国内团队:延伸材料有神奇特性

人工智能 新闻
没有证据证实 LK-99 为常温超导体,但一个国内团队表示 LK-99 的延伸材料确实具备神奇性质。

轰轰烈烈的韩国「室温超导」事件,最近似乎划上了句号。

韩国超传导低温学会验证委员会近日表示,此前由韩国研究团队制造的疑似室温超导体 LK-99 没有显示出超导的任何关键特征。

LK-99 源自韩国一个研究团队在今年 7 月份发布的两篇论文。在论文中,作者宣称,他们合成了一种常压下的室温超导材料,其超导临界温度超过了水的沸点,最高达到 127 摄氏度。这种材料被他们命名为 LK-99,是一种铜掺杂的铅磷灰石(合成之后的样品如下图所示)。

图片

众所周知,室温超导是在室温条件下实现的超导现象,指电流可以在材料中以零电阻通过。如果人类能够实现室温常压超导,那么,电网、电子设备和交通运输的能源效率有望得到大幅提升,第四次工业革命也有望开启。所以,在韩国团队公布了自己的结果后,整个科学界都被这项研究吸引了。如果实验结果为真,这将是一个诺奖级的研究。

但这次,希望又破灭了。

上述委员会在一份报告中说:「没有理由说 LK-99 是一种超导体」,在一系列室温或低温下的电阻和磁感应强度测试中,LK-99 都没有显示出超导迹象。

委员会还补充说,在去除杂质的另一份单晶样品上进行的测试表明,所谓的超导体是一种「非导体(nonconductor)」,不允许电流通过。

如果 LK-99 是一种超导体,它就必须显示出零电阻,在不损失能量的情况下传输电能。而且,当科学家施加磁场时,它应该会产生等大的反向磁场,使磁铁悬浮在超导体上方 —— 这就是迈斯纳效应。

委员会说:「一些样品在 100 摄氏度时的电阻率发生了急剧变化,然而,我们认为相变是由(样品中的)杂质引起的。与其他国家进行的研究一样,杂质较少的样品没有发生相变」。

委员会还补充说,由 LK-99 研究的第一作者 Lee Suk-bae 领导的首尔量子能源研究中心(Quantum Energy Research Centre)没有按照承诺将超导体样品送去进行交叉验证。

该委员会由来自首尔大学、浦项科技大学和汉阳大学等当地大学的八个研究小组组成,自今年 8 月以来,已对 LK-99 进行了长达数月的有效性测试。

专家称,即使量子能源研究中心决定将其 LK-99 样品送交委员会,也「极不可能」证明 LK-99 的有效性。

韩国科学技术院碳复合材料研究中心高级研究员 Kim Sung-soo 说:「与研究中心所说的杂质很少的单晶样品会出现电阻率急剧下降的情况不同,(在委员会发布公告之前的)许多论文都报道说,再造样品中的杂质 —— 尤其是硫化铜 —— 是造成电阻率急剧下降的原因。

Kim 指出,实验室的样本可能由他们无法理解或表征的结构组成,甚至含有杂质,因此很难支持他们关于 LK-99 是超导体的说法。

但声称自己领导了 LK-99 研究的 Kwon Young-wan 在周一举行的新闻发布会上说:「我仍然相信 LK-99 是超导体」。

Kwon 补充说,委员会未能重新创造出室温超导体,因为仅用几个月就证明该研究的有效性是不可能的。

Kwon 在评论研究小组在 YouTube 上展示 LK-99 以倾斜姿势悬浮的一段视频时说:「与高温超导体相比,它表现出的迈斯纳效应水平较低」。但他拒绝透露重制所谓超导体的视频,称其尚未准备就绪。

随着越来越多的实验室表示无法复现 LK-99 论文中的结果,这一研究的热度正变得越来越低。Science 杂志在一篇文章中提到,「尽管(在 LK-99 事件中)还没有出现对不当行为的指控,但这一事件代表了人类在追求超导梦想的过程中又一次引人注目的失误。」

不过,国内的一位研究者(资料显示来自中南大学)在知乎上发帖称,「从 LK-99 延伸出来的材料确实具备神奇的性质。」他们在 LK-99 报道的制备方法基础上改动和增加了许多工艺,有些内容暂时还不能公开,但近几天大家就可以看到相关报道。看来,LK-99 还是有一定科研价值的?

图片

责任编辑:张燕妮 来源: 机器之心
相关推荐

2024-01-04 12:33:33

AI模型

2023-08-15 09:13:06

超导论文

2023-08-17 13:10:32

Nature超导

2023-12-23 23:29:15

数据材料LK-99

2023-08-10 15:24:52

超导技术

2024-03-05 13:59:31

AI模型

2023-08-16 13:48:33

A超导技术

2023-08-07 13:42:32

超导技术

2023-08-03 13:22:30

超导技术

2023-08-01 15:16:39

研究超导性

2023-10-06 13:35:35

AI研究

2023-08-08 12:49:54

超导理论

2023-08-04 17:11:27

韩国超导

2023-08-04 13:55:09

论文物理

2023-11-08 13:19:00

模型训练

2023-11-09 13:23:31

室温超导LK-99

2023-09-07 21:40:06

室温超导Nature

2023-08-01 09:40:56

超导技术

2023-08-02 18:37:00

室温超导输电

2023-08-06 12:58:08

磁悬浮技术
点赞
收藏

51CTO技术栈公众号