依赖注入与控制反转:优化Go语言REST API客户端

开发 前端
在这篇文章中,我展示了如何以及为什么在Go中使用DI和IoC。正确使用DI/IoC可以导致更易于测试和维护的代码,特别是在代码库不断增长时。虽然代码示例是用Go编写的,但这里描述的原则同样适用于其他编程语言。

在这篇文章中,我将探讨依赖注入(DI)和控制反转(IoC)是什么,以及它们的重要性。作为示例,我将使用Monibot的REST API客户端。让我们开始吧:

一个简单的客户端实现

我们从一个简单的客户端实现开始,允许调用者访问Monibot的REST API,具体来说,是为了发送指标值。客户端的实现可能如下所示:

package monibot

type Client struct {
}

func NewClient() *Client {
    return &Client{}
}

func (c *Client) PostMetricValue(value int) {
    body := fmt.Sprintf("value=%d", value)
    http.Post("https://monibot.io/api/metric", []byte(body))
}

这里有一个客户端,提供了PostMetricValue方法,该方法用于将指标值上传到Monibot。我们的库的用户可能像这样使用它:

import "monibot"

func main() {
    // 初始化API客户端
    client := monibot.NewClient()
    // 发送指标值
    client.PostMetricValue(42)
}

依赖注入

现在假设我们想对客户端进行单元测试。当所有HTTP发送代码都是硬编码的时候,我们如何测试客户端呢?对于每次测试运行,我们都需要一个“真实”的HTTP服务器来回答我们发送给它的所有请求。不可取!我们可以做得更好:让我们将HTTP处理作为“依赖”;让我们发明一个 Transport 接口:

package monibot

// Transport传输请求。
type Transport interface {
    Post(url string, body []byte)
}

让我们再发明一个具体的使用HTTP作为通信协议的Transport:

package monibot

// HTTPTransport是一个使用HTTP协议传输请求的Transport。
type HTTPTransport struct {
}

func (t HTTPTransport) Post(url string, data []byte) {
    http.Post(url, data)
}

然后让我们重写客户端,使其“依赖”于一个Transport 接口:

package monibot

type Client struct {
    transport Transport
}

func NewClient(transport Transport) *Client {
    return &Client{transport}
}

func (c *Client) PostMetricValue(value int) {
    body := fmt.Sprintf("value=%d", value)
    c.transport.Post("https://monibot.io/api/metric", []byte(body))
}

现在,客户端将请求转发到它的Transport依赖。当创建客户端时,transport(客户端的依赖项)被“注入”到客户端中。调用者可以这样初始化一个客户端:

import "monibot"

func main() {
    // 初始化API客户端
    var transport monibot.HTTPTransport
    client := monibot.NewClient(transport)
    // 发送指标值
    client.PostMetricValue(42)
}

单元测试

现在我们可以编写一个使用“伪造”Transport的单元测试:

// TestPostMetricValue确保客户端向REST API发送正确的POST请求。
func TestPostMetricValue(t *testing.T) {
    transport := &fakeTransport{}
    client := NewClient(transport)
    client.PostMetricValue(42)
    if len(transport.calls) != 1 {
        t.Fatal("期望1次传输调用,但是是%d次", len(transport.calls))
    }
    if transport.calls[0] != "POST https://monibot.io/api/metric, body=\\"value=42\\"" {
        t.Fatal("错误的传输调用 %q", transport.calls[0])
    }
}

// 伪造的Transport是单元测试中使用的Transport。
type fakeTransport struct {
    calls []string
}

func (f *fakeTransport) Post(url string, body []byte) {
    f.calls = append(f.calls, fmt.Sprintf("POST %v, body=%q", url, string(body)))
}

添加更多的Transport函数

现在假设我们库的其他部分,也使用了Transport功能,需要比POST更多的HTTP方法。对于它们,我们必须扩展我们的Transport接口:

package monibot

// Transport传输请求。
type Transport interface {
    Get(url string) []byte     // 添加,因为health-monitor需要
    Post(url string, body []byte)
    Delete(url string)         // 添加,因为resource-monitor需要
}

现在我们有一个问题。编译器抱怨我们的fakeTransport不再满足Transport接口。所以让我们通过添加缺失的函数来解决它:

// 伪造的Transport是单元测试中使用的Transport。
type fakeTransport struct {
    calls []string
}

func (f *fakeTransport) Get(url string) []byte {
    panic("不使用")
}

func (f *fakeTransport) Post(url string, body []byte) {
    f.calls = append(f.calls, fmt.Sprintf("POST %v, body=%q", url, string(body)))
}

func (f *fakeTransport) Delete(url string) {
    panic("不使用")
}

我们做了什么?由于在单元测试中我们不需要新的Get()和Delete()函数,如果它们被调用,我们就抛出异常。这里有一个问题:每次在Transport中添加新函数时,我们都会破坏现有的fakeTransport实现。对于大型代码库来说,这将导致维护噩梦。我们能做得更好吗?

控制反转

问题在于我们的客户端(和相应的单元测试)依赖于一个它们不能控制的类型。在这种情况下,它是Transport接口。为了解决这个问题,让我们通过引入一个未导出的接口,该接口仅声明了我们的客户端所需的内容,来反转控制:

package monibot

// clientTransport传输Client的请求。
type clientTransport interface {
    Post(url string, body []byte)
}

type Client struct {
    transport clientTransport
}

func NewClient(transport clientTransport) *Client {
    return &Client{transport}
}

func (c *Client) PostMetricValue(value int) {
    body := fmt.Sprintf("value=%d", value)
    c.transport.Post("https://monibot.io/api/metric", []byte(body))
}

现在让我们将我们的单元测试更改为使用假的clientTransport:

// TestPostMetricValue确保客户端向REST API发送正确的POST请求。
func TestPostMetricValue(t *testing.T) {
    transport := &fakeTransport{}
    client := NewClient(transport)
    client.PostMetricValue(42)
    if len(f.calls) != 1 {
        t.Fatal("期望1次传输调用,但是是%d次", len(f.calls))
    }
    if f.calls[0] != "POST https://monibot.io/api/metric, body=\\"value=42\\"" {
        t.Fatal("错误的传输调用 %q", f.calls[0])
    }
}

// 伪造的Transport是在单元测试中使用的clientTransport。
type fakeTransport struct {
    calls []string
}

func (f *fakeTransport) Post(url string, body []byte) {
    f.calls = append(f.calls, fmt.Sprintf("POST %v, body=%q", url, string(body)))
}

由于Go的隐式接口实现(如果愿意,可以称之为'鸭子类型'),我们库的用户什么也不需要改变:

import "monibot"

func main() {
    // 初始化API客户端
    var transport monibot.HTTPTransport
    client := monibot.NewClient(transport)
    // 发送指标值
    client.PostMetricValue(42)
}

重新审视Transport

如果我们使IoC成为规范(正如我们应该做的那样),就不再需要导出Transport接口了。为什么呢?因为如果消费者需要一个接口,让他们在自己的作用域中定义它,就像我们对'clientTransport'做的那样。

不要导出接口。导出具体实现。如果消费者需要接口,让他们在自己的作用域中定义。

总结

在这篇文章中,我展示了如何以及为什么在Go中使用DI和IoC。正确使用DI/IoC可以导致更易于测试和维护的代码,特别是在代码库不断增长时。虽然代码示例是用Go编写的,但这里描述的原则同样适用于其他编程语言。

责任编辑:武晓燕 来源: 爱发白日梦的后端
相关推荐

2022-04-30 08:50:11

控制反转Spring依赖注入

2019-09-18 18:12:57

前端javascriptvue.js

2014-01-07 14:39:26

Android开发RxJavaREST

2009-06-12 19:18:08

REST客户端框架JavaScript

2024-04-01 00:02:56

Go语言代码

2024-05-27 00:13:27

Go语言框架

2024-07-30 08:12:04

Java消息go

2020-07-14 14:59:00

控制反转依赖注入容器

2020-11-16 08:05:26

API调用VS Code

2010-05-31 10:11:32

瘦客户端

2018-12-27 13:11:04

爱奇艺APP优化

2024-04-18 08:39:57

依赖注入控制反转WPF

2022-09-30 15:31:21

Golang开发工具

2012-12-07 10:15:53

IBMdW

2021-10-18 05:00:38

语言GoRequestHTTP

2021-05-07 15:28:03

Kafka客户端Sarama

2010-08-31 16:29:40

DHCP客户端

2010-12-17 10:16:33

OpenVAS

2011-08-17 10:10:59

2021-09-22 15:46:29

虚拟桌面瘦客户端胖客户端
点赞
收藏

51CTO技术栈公众号