秒杀700亿Llama 2!最新国产大模型亮相,无需申请即可免费商用,背后公司来自私募巨头

人工智能
最好的开源大模型CodeLlama相比,DeepSeek Coder在代码生成任务上(使用标准数据集HumanEval、MBPP和DS-1000进行评测)分别领先了9.3%、10.8%和5.9%。

国产大模型刚刚出了一位全新选手:

参数670亿的DeepSeek。

它在近20个中英文的公开评测榜单上直接超越了同量级、700亿的Llama 2。

并尤其以推理、数学和编码能力为突出。

图片图片

其中在数学能力上,它测了Grok刚刚参与过的匈牙利今年最新的高中数学考试题,得了65分。

图片图片

对比Grok当时公布的成绩:59分,以及GPT-4的68分,表现十分出色。

DeepSeek主打一个发布即开源:

共包含70亿和670亿两个参数版本,每个版本均含基础模型和指令微调模型,无需申请,即可免费商用。

同时,它已开放了全面内测,注册一下就能玩。

图片图片

Ps. DeepSeek的中文能力在GPT-3.5之上,可以使用中文进行测试。

图片图片

在推特上,DeepSeek也引起了一大批技术同行的关注:

早期测试过的人表示没毛病。

图片图片

还有人赞誉DeepSeek弥补了开源LLM在数学和编码上的短板。

图片图片

那么,DeepSeek是如何训练出来的?

与Llama架构相同

DeepSeek使用与Llama相同的架构,即自回归Transformer解码器架构。

其中70亿参数的版本使用多头注意力,670亿参数版本使用分组查询注意力。

预训练在包含2万亿个中英文token的数据集(序列长度4096)和AdamW优化器上进行。

其中70亿参数版本的模型的训练batch size为2304,学习率为4.2e-4;670亿参数版本的模型的batch size为4608,学习率为3.2e-4。

DeepSeek的训练过程中特别采用了多步学习率计划:

先从2000个预测步骤开始,然后在1.6万亿token时逐步达到最大值的31.6%,在1.8万亿token时逐步达到最大值的10%。

有网友看完表示:

这种从1.6万亿token时开启的学习率冷却阶段有点类似于“Scaling Vision Transformers”那篇论文中的lr计划消融操作。

这也与Llama的余弦学习率衰减(要求它们提前指定步数)完全不同,非常有趣。

图片图片

下图是作者发布的DeepSeek训练损失曲线以及在几个基准上的曲线图:

图片图片

数学和编码能力突出

我们重点关注DeepSeek进行的如下三大类测试结果。

一个是今年5月才发布的2023年匈牙利高中数学考试题。

尽管DeepSeek已经在GSM8k和MATH这两个标准基准上取得了不错的成绩:

图片图片

但由于存在过度拟合这些数据集的风险,作者还是决定评估一下样本外的数学泛化能力。

如下图所示,位于右上角的670亿参数DeepSeek最终在样本内数学能力(纵轴GSM8K)排名第三,仅次于Claude 2和GPT-4,但在样本外数学能力(横轴Exam Score)排名第二,仅次于GPT-4。

图片图片

第二个是考验DeepSeek指令跟随能力的测试。

在此,作者使用了谷歌11月15日刚刚发布的指令跟随评测集,来评价模型的“听话程度”。

结果是领先一众开源模型,但59.1分的成绩与GPT-4还有20分的差距。

图片图片

最后是代码能力测试。

同样,作者在这里重点关注了样本外能力,选择的是LeetCode今年7月2日到11月12日的最新真题进行测试。

结果是比国内常见的大模型都要好很多,并且也远远超越了GPT 3.5。

图片图片

背后公司是谁?

经搜索,DeepSeek背后的公司名叫深度求索。base位于北京,今年5月正式成立。

目标不止是大模型,而是AGI。

就在11月初,这家公司就发布代码大模型DeepSeek Coder。

与之前最好的开源大模型CodeLlama相比,DeepSeek Coder在代码生成任务上(使用标准数据集HumanEval、MBPP和DS-1000进行评测)分别领先了9.3%、10.8%和5.9%。

图片图片

特别值得一提的是,深度求索其实是从知名私募巨头幻方旗下独立出来的一家公司。

幻方这家公司听起来和AI“八杆子打不着”,但实际上,2019年时,幻方就发布了自研深度学习训练平台“萤火一号”。

据称该项目总投资近2亿元,共搭载了1100块GPU。

后来“萤火一号”由升级为“二号”,搭载的GPU数则达到了约1万张。

参考链接:
[1]https://mp.weixin.qq.com/s/Zj7gPGqJ8UTTxp1umfWjKQ[2]https://twitter.com/johannes_hage/status/1730075189428494842
[3]https://twitter.com/jeremyphoward/status/1730113946345205970
[4]https://twitter.com/bindureddy/status/1730248977499762740
[5]https://zhuanlan.zhihu.com/p/636451367

责任编辑:武晓燕 来源: 量子位
相关推荐

2023-08-07 13:40:39

AI模型

2023-07-25 13:52:54

开源模型

2023-09-04 12:58:05

2023-09-11 13:28:00

AI模型

2023-07-28 15:39:20

TransGPT人工智能开源

2023-08-07 12:52:04

模型免费商用技术

2023-07-18 15:05:00

开源大模型

2023-07-19 12:09:36

大模型Llama 2扎克伯格

2023-08-21 10:36:23

2024-05-07 08:12:08

2023-08-03 19:11:45

2023-10-29 22:41:29

模型开源

2023-07-04 15:58:11

ChatGPT人工智能

2023-07-19 15:01:14

GPT-4LaMA2参数

2022-06-16 13:43:45

漏洞黑客网络攻击

2023-09-26 14:21:33

模型开源Qwen-14B

2024-01-03 17:40:49

模型AI

2024-05-14 16:58:05

腾讯混元大模型文生图

2023-07-27 14:11:32

模型开源
点赞
收藏

51CTO技术栈公众号