秒杀系统 Go 并发编程实践!

开发 前端
使用互斥锁和计数器等原语,我们实现了并发控制、数据一致性和并发安全。这些原语帮助我们解决了高并发场景下的并发访问问题,并保证了系统的稳定性和性能。

有问必答

图片图片

本文将介绍如何使用Go语言的并发原语来构建一个简单的高并发秒杀系统。

我们将使用Go语言的原生库和一些常见的技术手段,包括互斥锁、通道、计数器等,来解决并发访问和数据一致性的问题。

本文只是一个简单的示例,重点是Go语言并发原语在业务场景中的应用。

在实际应用中,还需要考虑数据库事务、分布式锁、限流等问题。我之前也写过一篇万字长文,附在文末了。

1. 引言

秒杀系统是一种高并发场景下的特殊应用,需要处理大量的并发请求和保证数据的一致性。本文将介绍如何使用Go语言的并发原语来构建一个高并发的秒杀系统,以满足用户的需求并保证系统的稳定性。

2. 架构设计

我们的秒杀系统将采用经典的客户端-服务器架构。客户端发送秒杀请求,服务器处理请求并更新库存。为了保证系统的高并发性能,我们将使用以下技术和原语:

  • 互斥锁(sync.Mutex):用于保护共享资源的并发访问。
  • 计数器(sync.WaitGroup):用于等待所有请求完成。

3. 实现步骤

下面是我们实现秒杀系统的关键步骤:

3.1 初始化库存

在系统启动时,我们需要初始化商品的库存。

var stock = 100 // 商品库存
var mu sync.Mutex
  • 1.
  • 2.

3.2 处理秒杀请求

当客户端发送秒杀请求时,服务器需要处理请求并更新库存。

func handleRequest(user int) {
    defer wg.Done()
    if tryAcquireLock() {
        if stock > 0 {
            // 执行秒杀逻辑
            stock--
            fmt.Printf("用户%d秒杀成功,剩余库存:%d\n", user, stock)
        } else {
            fmt.Printf("用户%d秒杀失败,库存不足\n", user)
        }
        releaseLock()
    } else {
        fmt.Printf("用户%d未获取到锁,秒杀失败\n", user)
    }
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.

3.3 并发控制和等待

为了控制并发请求的数量,我们使用计数器和通道来限制并发度。

var wg sync.WaitGroup

func main() {
    for i := 1; i <= 1000; i++ {
        wg.Add(1)
        go handleRequest(i)
    }
    wg.Wait()
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.

3.4 互斥锁和并发安全

为了保证并发访问的安全性,我们使用互斥锁来保护共享资源的访问。

注意:TryLock()是go1.18才引入的

func tryAcquireLock() bool {
    return mu.TryLock()
}

func releaseLock() {
    mu.Unlock()
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.

4. 完整代码

package main

import (
 "fmt"
 "sync"
)

var stock = 100 // 商品库存
var mu sync.Mutex

var wg sync.WaitGroup

func main() {
    for i := 1; i <= 1000; i++ {
        wg.Add(1)
        go handleRequest(i)
    }
    wg.Wait()
}

func handleRequest(user int) {
    defer wg.Done()
    if tryAcquireLock() {
        if stock > 0 {
            // 执行秒杀逻辑
            stock--
            fmt.Printf("用户%d秒杀成功,剩余库存:%d\n", user, stock)
        } else {
            fmt.Printf("用户%d秒杀失败,库存不足\n", user)
        }
        releaseLock()
    } else {
        fmt.Printf("用户%d未获取到锁,秒杀失败\n", user)
    }
}

func tryAcquireLock() bool {
    return mu.TryLock()
}

func releaseLock() {
    mu.Unlock()
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.

5. 运行结果

图片图片

6. 总结

通过使用Go语言的并发原语,我们成功地构建了一个高并发的秒杀系统。

使用互斥锁和计数器等原语,我们实现了并发控制、数据一致性和并发安全。这些原语帮助我们解决了高并发场景下的并发访问问题,并保证了系统的稳定性和性能。

本文只是一个简单的示例,实际的秒杀系统可能涉及更多的业务逻辑和并发控制。

本文转载自微信公众号「 程序员升级打怪之旅」,作者「 王中阳Go」,可以通过以下二维码关注。

转载本文请联系「 程序员升级打怪之旅」公众号。

责任编辑:武晓燕 来源: 程序员升职加薪之旅
相关推荐

2022-10-17 08:07:13

Go 语言并发编程

2018-09-15 04:59:01

2020-10-14 07:20:53

高并发

2021-06-23 06:48:42

秒杀Java电商

2025-02-20 00:01:00

2024-07-08 00:01:00

GPM模型调度器

2023-02-10 09:40:36

Go语言并发

2022-04-24 15:29:17

微服务go

2017-11-10 11:27:48

Go并行算法

2024-09-06 10:48:13

2019-07-30 11:17:18

系统数据安全

2024-07-03 11:01:55

2020-01-14 11:17:33

Go并发Linux

2024-07-05 15:05:00

2020-04-13 08:33:39

高并发秒杀系统

2024-04-11 07:40:55

Go并发编程

2024-05-06 07:53:09

Go并发编程

2021-03-24 06:06:13

Go并发编程Singlefligh

2024-06-19 10:08:34

GoChannel工具

2024-03-05 18:24:52

I/O聚合优化存储
点赞
收藏

51CTO技术栈公众号