ChatGPT只算L1阶段,谷歌提出AGI完整路线图

人工智能
按照谷歌这个标准来看,大多数已有AI产品其实都分别进入了不同的AGI阶段,但只仅限于在技能水平上——要谈及通用性,目前只有ChatGPT等模型完全合格。

AGI应该如何发展、最终呈什么样子?

现在,业内第一个标准率先发布:

AGI分级框架,来自谷歌DeepMind。

图片

该框架认为,发展AGI必须遵循6个基本原则:

  • 关注能力,而非过程
  • 同时衡量技能水平和通用性
  • 专注于认知和元认知任务
  • 关注最高潜力,而非实际落地水平
  • 注重生态有效性
  • 关注整条AGI之路的发展,而非单一的终点

在此原则之上,AGI将呈现6大发展阶段,每个阶段都有对应的深度(性能)和广度(通用性)指标。

图片

我们当前的AI产品走到哪一阶段了?这里也有答案。

详细来看。

6项基本原则

什么是AGI?

对于这个问题,许多科学家、研究机构都给出了自己的理解。

比如图灵提出的图灵测试认为机器是否能“思考”就是一个衡量指标;强人工智能的概念提出者则认为,AGI是一个拥有意识的系统;还有人说AGI一定是能在复杂性和速度上与人脑一样甚至超越人脑……

谷歌认为,这些定义都不全面。

像图灵测试,一些LLM已经可以通过,但我们能称那些模型为AGI吗?

像类人脑说法,Transformer架构的成功就已表明,严格基于大脑的思考过程对于AGI来说并不是必须的。

通过分析这些定义(一共9种,详情可翻阅原文)的优缺点,谷歌重新理出了6项基本原则:

1、关注能力,而非过程

这可以帮助我们去除一些不一定是实现AGI的必备要求:

比如AGI不一定要用类似人类的方式思考或理解,也不意味着系统必须具有主观意识等能力(主要是这种能力无法也通过固定的方法去测量)

2、注重通用性和技能水平

目前所有的AGI定义都强调了通用性,这一点不必多说。但谷歌强调,性能也是AGI的关键组成部分(也就是可以达到人类的几分水平)。在后面的具体阶段制定中,主要也是根据这俩指标进行分类的。

3、专注于认知和元认知任务

前者目前基本为共识,即AGI可以执行各种非体力任务。不过谷歌在此强调,AI系统执行物理任务的能力也需要加强,因为它对于认知能力是有推动作用的。

此外,元认知能力,如学习新任务或知道何时向人类寻求帮助,是系统走向通用性的关键先决条件。

4、关注最高潜力,而非实际落地水平

证明一个系统可以在给定的标准上完成任务,就足以宣布该系统为AGI,我们不要求一定得在开放世界中完全部署出水平相同的系统。

因为,这可能会面临一些非技术阻碍,比如法律和社会考虑、潜在道德问题。

5、注重生态有效性

所谓生态有效性,谷歌指的是选择真正有用的现实任务去benchmark系统的进步,这些任务不仅包括经济价值也包括社会和艺术价值,要避开那些容易自动匹配和量化的传统AI指标。

6、关注整条AGI之路的发展,而非单一的终点

这也是为什么谷歌要制定我们接下来将要看到的6个发展阶段。

6大必经阶段

AGI之路的6个阶段由深度指标(即技能水平,与人类相比)和广度指标(通用性)进行划分。

第零阶段为“No AI”,计算软件、编译器等属于该范畴,在通用性上只能执行human-in-the-loop任务。

第一阶段为“涌现级”(Emerging),技能相当于或略比没有相关技能的人类要强。

ChatGPT、Bard和Llama 2等大模型就属于该阶段,并且已经满足了该阶段要达到的通用性。

第二阶段可理解为“刚刚合格级”(Competent),可以达到正常成年人50%的水平。

像语音助手Sir、能在短文写作/简单编码等任务中达到SOTA水平的大模型都属于这一阶段。

不过,它们都只是在技能指标上合格了,通用性还够不上,也没有其它能够达到这一阶段通用性水平的AI产品。

图片

第三阶段为“专家级”(Expert),可达到正常成年人90%的水平。

谷歌认为,拼写和语法检查器如Grammarly、图像生成模型Imagen等可以划为该阶段,主要也是在技能水平上达标了,通用性还不够。

第四阶段为“大师级”(Virtuoso),可达到正常人类99%的水平。

深蓝、AlphaGo等都属于。同样,还没有哪个AI产品可以达到属于这一级别的通用能力。

最后一阶段为“超人级”(Superhuman),在技能指标上,已经可以超越顶尖科学家的AlphaFold、AlphaZero也可划入该阶段。

毫无疑问,具备超人智能级通用性的AI还没诞生。

图片

从中我们看出,按照谷歌这个标准来看,大多数已有AI产品其实都分别进入了不同的AGI阶段,但只仅限于在技能水平上——要谈及通用性,目前只有ChatGPT等模型完全合格。

但它们也只还处于最底层的“一级AGI”阶段。

不过,正如原则2所说,评价AGI就是要看这技能水平和通用性这两个指标,这样划分也算说得过去。

值得一提的是,我们可以看到,像DALLE-2这样的图像生成模型已经可以归类于“三级AGI”。

谷歌给出的理由是,因为它生成的图像已经比大多数人都要强了(也就是超越90%人类)。

这一划分并未考虑大多数用户由于提示技巧不佳,无法达成最佳性能的情况。

因为遵循原则4,我们只需要关注一个系统的潜力到了就够了。

另外,对于最终阶段的AGI,谷歌畅想,它除了蛋白质结构预测,还可能能同时进行与动物交流、分析大脑信号、进行高质量预测等各种人类难以企及的任务,这样才不枉费我们的期待。

最后,对于这个层级划分,谷歌也承认还有很多事情要做:

比如在通用性维度上,应该用哪些标准任务集进行测量?完成多大比例的任务才行?有哪些任务是一定要满足的?

这些问题一时都不大可能全部摸清。

你同意谷歌提出的这些原则和阶段划分吗? 

原文: 
https://arxiv.org/abs/2311.02462。

责任编辑:姜华 来源: 量子位
相关推荐

2014-11-12 13:26:55

创业

2014-11-12 13:31:22

2023-02-26 12:44:03

ChatGPTAGI路线图

2024-07-12 12:51:44

2014-11-12 13:39:57

创业

2010-12-31 10:05:22

Exchange

2012-02-08 09:49:02

惠普webOS开源

2011-05-11 16:29:38

iOS

2012-02-22 16:44:44

Flash

2009-01-19 15:03:40

ASP.NET学习ASP.NET入门ASP.NET学习曲线

2010-07-23 14:34:38

2013-01-16 17:34:32

Android开发路线图

2010-12-31 13:22:36

2024-06-26 09:00:00

2023-02-25 21:48:36

人工智能技术

2024-08-01 16:06:22

2020-09-25 09:34:51

微软浏览器Windows

2022-10-12 13:51:38

自动化RPA

2022-06-13 10:15:33

云原生架构云原生

2012-02-09 09:31:41

IT部门技术路线图
点赞
收藏

51CTO技术栈公众号