11 月 3 日消息,科研人员近日模仿大脑中的神经网络,成功开发出一种可以动态学习和记忆的物理神经网络。该物理神经网络由微小的纳米线组成,并模仿大脑中的突触,通过响应电线相交点处的电子电阻变化来执行任务。
该物理神经网络通过识别和调用电脉冲序列,能够使用在线访问的动态数据,执行实时学习、图像识别等任务,避免了沉重的内存和能源使用。
图源:悉尼大学
IT之家注:纳米线网络(Nanowire network)是一种纳米技术,通常由肉眼不可见的高导电银线制成,覆盖有塑料材料并形成网状结构。
每根纳米线的宽度约为人类头发的千分之一,它们共同形成一个随机网络,其行为很像我们大脑中的神经元网络。
它们能够自我组装成一个具有记忆和处理能力的动态复杂网络,类似于人脑。现在,悉尼大学的国际研究团队证明了纳米线网络不仅与人脑相似,而且能够像人脑一样学习和记忆。
该物理神经网络效仿人类的神经网络,由直径为十亿分之一米的细线组成,通过一系列命令或算法执行记忆和学习任务来处理信息,这些命令或算法对纳米线交叉处的电子电阻变化做出反应,就像《Pick-up Sticks》游戏中的结点一样。
记忆和学习任务是使用简单的算法实现的,这些算法响应纳米线重叠处的电子电阻变化。这种功能被称为“电阻记忆开关”,当电输入遇到电导率变化时就会产生,类似于我们大脑中的突触所发生的情况。
纳米线网络学会了识别手写数字。
这种创新技术不仅可以节省能源,还可以显著减少内存使用,为能够处理复杂的现实世界学习和记忆任务的高效、低能耗的机器智能铺平道路。他们的开创性研究论文已发表在《自然通讯》上,标志着机器学习和人工智能领域的重大进步。
IT之家在此附上研究论文地址:Zhu, R., Lilak, S., Loeffler, A. et al. Online dynamical learning and sequence memory with neuromorphic nanowire networks. Nat Commun 14, 6697 (2023). https://doi.org/10.1038/s41467-023-42470-5