构建数字孪生的四大挑战

数字化转型
如果不能解决由数字孪生带来的开发难题,那么企业就无法享受这种技术便利。

数字孪生已经成为企业当前面对的一大机遇,其核心在于利用虚拟副本中的分析数据对未来业务事件开展预测。这不仅能够大大降低决策难度,同时也有助于提升决策效果。

然而,如果不能解决由数字孪生带来的开发难题,那么企业就无法享受这种技术便利。本文将带大家了解构建实时数字孪生副本时可能面临的四大挑战,并尝试提出行之有效的应对策略。

一、将2D模型转换为3D模型

数字孪生依靠3D表示来提供逼真的可视化与精确的模拟效果,而其中的主要挑战集中在转换过程。从2D模型到3D模型的过渡,要求我们对空间维度、精度和视觉准确性拥有深刻的理解和把握。

但是,要如何有效应对这一挑战呢?

将CAD文件导入3D

计算机辅助设计(CAD)文件中包含丰富的空间数据,也使其成为构建精确3D模型的理想基础。目前市面上的专用软件已经能够提取这些数据并将其转换为3D格式,不仅能够保障准确性、还可大大加快转换速度。

用这种方式获得的3D模型可以无缝集成至数字孪生系统当中,从而提升其可视化与仿真能力。

应用3D点云建模

另一种方法则是利用3D点云,即三维空间中各点的集合,用以显示对象的形式和排列。我们可以扫描对象并记录对象3D模型中的各个数据点。在3D结构建立完成后,我们可以进一步完善模型,例如模拟真实场景、测试结构完整性以及制作沉浸式虚拟环境。

二、与现有生态系统相兼容

新的数字孪生方法,必然对应公司基础设施内的新平台与新技术。但问题是如此这些新元素无法与现有技术组件无缝集成,往往会大大拉高新方案的落地周期和实现成本。

面对这个问题,我们可以尝试以下几种解决思路:

与企业资源规划系统(ERP)相集成

通过与ERP相集成,我们可以保证虚拟孪生与公司现有系统之间顺利实现数据共享,从而确保数字孪生收集和分析的信息能够自动反映在ERP系统当中,反之亦然。

借助这股信息流,我们的数字孪生就能轻松与其他业务流程配合起效,最终节约数字孪生实现所需要的时间和资源。此外,这种方式还能保证整个公司内的数据统一性与一致性,凭借可靠信息支撑起坚定稳定的管理决策。

三、数据结构与数据质量

这一挑战的核心,在于现场数据往往并不遵循统一标准,而且可供使用的数据往往质量较差。这是因为不同供应商的数据集成平台在显示信息时,大多采取不同的标准和方法。此外,缺乏通用数据库也会给转换过程带来额外的复杂性。

我们的解决思路如下:

数据提取与转换

这一过程的实质,就是先从外部来源提取数据,再将其转换成具有适当结构/格式的存储结果。第一步往往非常耗时,因此为了尽可能缩短整个过程,我们通常会将数据提取与转换同步进行。

这种方法优化了将数据整合进分析模型的过程,有助于以更易访问的形式呈现信息内容,确保数字孪生模型能够轻松读取已经收集到的数据。

四、数字孪生的可扩展性

扩展规模的核心,是在扩大项目的同时保证不影响其效率和功能。也就是说,我们需要考虑随用户和数据量的扩大,系统负载会出现怎样的变化;同时关注资源管理与优化,确保在不断扩大的规模之下维持理想的性能与可靠性。

我们可以考虑以下解决办法:

将数字孪生部署在云端

在云环境中部署数字孪生应用,可以提供更灵活且易用的软硬件资源,从而促进数字孪生的后续扩展。云环境最大的优势,就在于根据负载变化而灵活增加/减少算力容量与存储空间的能力。

在部署到位之后,数字孪生系统将快速响应用户与数据量的变化,帮助我们摆脱自主维护硬件的时间与资金投入。此外,云服务还提供自动化资源监控与管理工具,确保负载增加时系统仍可稳定运行。

在探究数字孪生对于业务决策的现实助益时,企业应当始终牢记一点:

只有采用正确的开发方法,才有可能享受数字孪生带来的便利。而一旦忽略了数据管理等现实因素,则极有可能引发流量信息过时、数字孪生副本与真实场景不同步等风险。只有解决了前文提出的一系列挑战,我们方可确保数字孪生项目运行在正确轨道之上,并最大限度发挥其潜在优势。

责任编辑:庞桂玉 来源: 至顶网
相关推荐

2023-08-03 14:45:00

数字孪生

2018-02-25 11:34:35

2022-09-29 00:24:30

元宇宙虚拟现实教育

2016-03-30 11:51:55

2017-01-11 16:50:25

开源云计算物联网

2023-04-04 10:54:12

2022-05-11 10:24:48

数字化转型企业IT

2017-03-27 11:00:34

Gartner数字化首席信息官

2019-06-03 13:02:35

工业大数据工业互联网大数据

2020-04-26 08:11:39

边缘计算云端网络

2013-11-04 10:06:18

2022-08-01 11:43:44

物联网数据收集数据管理

2023-04-18 10:36:07

2016-12-05 13:39:11

微服务架构质量

2009-10-13 09:14:48

迁移Windows 7

2018-06-11 08:41:48

云存储技巧私有

2023-08-22 10:52:50

业务转型数字化转型

2022-03-25 10:16:41

数字化转型企业IT领导者

2017-03-29 16:23:34

数据中心AWS网络

2018-08-30 18:28:14

点赞
收藏

51CTO技术栈公众号