一、背景
为缓解海量数据访问的性能瓶颈,提高系统高并发能力,项目接入分布式数据库中间件ShardingSphere;突然有一天,开始出现一些莫名其妙的的问题:项目启动缓慢、有时启动失败、甚者项目发布失败等等。
"什么代码都没改,就是在开发库刷了分表结构,怎么项目启动不起来了......"
二、探寻
排查方法
- 分析项目启动日志
仔细分析项目启动日志,发现SchemaMetaDataLoader类第70行,在Loading 1800 tables' meta data 时,耗时689s......
1800张表正好是我们数据库中的所有表......
2023-06-26 09:15:35,372 INFO (ShardingMetaDataLoader.java:131)- Loading 1 logic tables' meta data.
2023-06-26 09:15:35,665 INFO (SchemaMetaDataLoader.java:70)- Loading 1800 tables' meta data.
2023-06-26 09:15:04,473 INFO (MultipleDataSourcesRuntimeContext.java:59)- Meta data load finished, cost 689209 milliseconds.
- 如果遗漏了关键日志,断点bean的创建流程。
- 工具arthas(dashboard、thread...)。
- idea的debugger查看线程。
- 其他性能检测工具......
SchemaMetaDataLoader类究竟在干什么?为何要加载库中所有的表?下面分析下shardingsphere在启动时做了哪些操作。
分析
- 查看shardingsphere的自动装配类:SpringBootConfiguration (只粘贴部分代码)
@Configuration
@ComponentScan("org.apache.shardingsphere.spring.boot.converter")
@EnableConfigurationProperties({
SpringBootShardingRuleConfigurationProperties.class,
SpringBootMasterSlaveRuleConfigurationProperties.class, SpringBootEncryptRuleConfigurationProperties.class,
SpringBootPropertiesConfigurationProperties.class, SpringBootShadowRuleConfigurationProperties.class})
@ConditionalOnProperty(prefix = "spring.shardingsphere", name = "enabled", havingValue = "true", matchIfMissing = true)
@AutoConfigureBefore(DataSourceAutoConfiguration.class)
@RequiredArgsConstructor
// 实现EnvironmentAware接口(spring的扩展点),会在初始化该类时调用setEnvironment方法
public class SpringBootConfiguration implements EnvironmentAware {
private final SpringBootShardingRuleConfigurationProperties shardingRule;
private final SpringBootMasterSlaveRuleConfigurationProperties masterSlaveRule;
private final SpringBootEncryptRuleConfigurationProperties encryptRule;
private final SpringBootShadowRuleConfigurationProperties shadowRule;
private final SpringBootPropertiesConfigurationProperties props;
private final Map<String, DataSource> dataSourceMap = new LinkedHashMap<>();
private final String jndiName = "jndi-name";
// 项目中未采用读写分离【单库分表】,满足该条件,下面看下shardingDataSource是如何创建的
@Bean
@Conditional(ShardingRuleCondition.class)
public DataSource shardingDataSource() throws SQLException {
return ShardingDataSourceFactory.createDataSource(dataSourceMap, new ShardingRuleConfigurationYamlSwapper().swap(shardingRule), props.getProps());
}
@Bean
@Conditional(MasterSlaveRuleCondition.class)
public DataSource masterSlaveDataSource() throws SQLException {
return MasterSlaveDataSourceFactory.createDataSource(dataSourceMap, new MasterSlaveRuleConfigurationYamlSwapper().swap(masterSlaveRule), props.getProps());
}
@Bean
@Conditional(EncryptRuleCondition.class)
public DataSource encryptDataSource() throws SQLException {
return EncryptDataSourceFactory.createDataSource(dataSourceMap.values().iterator().next(), new EncryptRuleConfigurationYamlSwapper().swap(encryptRule), props.getProps());
}
@Bean
@Conditional(ShadowRuleCondition.class)
public DataSource shadowDataSource() throws SQLException {
return ShadowDataSourceFactory.createDataSource(dataSourceMap, new ShadowRuleConfigurationYamlSwapper().swap(shadowRule), props.getProps());
}
@Bean
public ShardingTransactionTypeScanner shardingTransactionTypeScanner() {
return new ShardingTransactionTypeScanner();
}
@Override
public final void setEnvironment(final Environment environment) {
String prefix = "spring.shardingsphere.datasource.";
for (String each : getDataSourceNames(environment, prefix)) {
try {
dataSourceMap.put(each, getDataSource(environment, prefix, each));
} catch (final ReflectiveOperationException ex) {
throw new ShardingSphereException("Can't find datasource type!", ex);
} catch (final NamingException namingEx) {
throw new ShardingSphereException("Can't find JNDI datasource!", namingEx);
}
}
}
private List<String> getDataSourceNames(final Environment environment, final String prefix) {
StandardEnvironment standardEnv = (StandardEnvironment) environment;
standardEnv.setIgnoreUnresolvableNestedPlaceholders(true);
return null == standardEnv.getProperty(prefix + "name")
? new InlineExpressionParser(standardEnv.getProperty(prefix + "names")).splitAndEvaluate() : Collections.singletonList(standardEnv.getProperty(prefix + "name"));
}
@SuppressWarnings("unchecked")
private DataSource getDataSource(final Environment environment, final String prefix, final String dataSourceName) throws ReflectiveOperationException, NamingException {
Map<String, Object> dataSourceProps = PropertyUtil.handle(environment, prefix + dataSourceName.trim(), Map.class);
Preconditions.checkState(!dataSourceProps.isEmpty(), "Wrong datasource properties!");
if (dataSourceProps.containsKey(jndiName)) {
return getJndiDataSource(dataSourceProps.get(jndiName).toString());
}
DataSource result = DataSourceUtil.getDataSource(dataSourceProps.get("type").toString(), dataSourceProps);
DataSourcePropertiesSetterHolder.getDataSourcePropertiesSetterByType(dataSourceProps.get("type").toString()).ifPresent(
dataSourcePropertiesSetter -> dataSourcePropertiesSetter.propertiesSet(environment, prefix, dataSourceName, result));
return result;
}
private DataSource getJndiDataSource(final String jndiName) throws NamingException {
JndiObjectFactoryBean bean = new JndiObjectFactoryBean();
bean.setResourceRef(true);
bean.setJndiName(jndiName);
bean.setProxyInterface(DataSource.class);
bean.afterPropertiesSet();
return (DataSource) bean.getObject();
}
}
- ShardingDataSourceFactory#createDataSource
public ShardingDataSource(final Map<String, DataSource> dataSourceMap,
final ShardingRule shardingRule,
final Properties props) throws SQLException {
super(dataSourceMap);
checkDataSourceType(dataSourceMap);
runtimeContext = new ShardingRuntimeContext(dataSourceMap, shardingRule, props, getDatabaseType());
}
- ShardingRuntimeContext(shardingsphere上下文-类比于spring中的applicationContext)
public ShardingRuntimeContext(final Map<String, DataSource> dataSourceMap,
final ShardingRule shardingRule,
final Properties props,
final DatabaseType databaseType) throws SQLException {
super(dataSourceMap, shardingRule, props, databaseType);
cachedDatabaseMetaData = createCachedDatabaseMetaData(dataSourceMap);
shardingTransactionManagerEngine = new ShardingTransactionManagerEngine();
shardingTransactionManagerEngine.init(databaseType, dataSourceMap);
}
// 调用父类方法加载元数据
protected MultipleDataSourcesRuntimeContext(final Map<String, DataSource> dataSourceMap,
final T rule,
final Properties props,
final DatabaseType databaseType) {
super(rule, props, databaseType);
metaData = createMetaData(dataSourceMap, databaseType);
}
// 加载元数据(加载完成之后会有耗时日志输出:Meta data load finished, cost....)
private ShardingSphereMetaData createMetaData(final Map<String, DataSource> dataSourceMap,
final DatabaseType databaseType) throws SQLException {
long start = System.currentTimeMillis();
// 数据源元数据
DataSourceMetas dataSourceMetas = new DataSourceMetas(databaseType,getDatabaseAccessConfigurationMap(dataSourceMap));
// 加载表元数据
SchemaMetaData schemaMetaData = loadSchemaMetaData(dataSourceMap);
// DataSourceMetas和SchemaMetaData共同组成ShardingSphereMetaData
ShardingSphereMetaData result = new ShardingSphereMetaData(dataSourceMetas, schemaMetaData);
// 元数据加载完成之后,会输出耗时日志
log.info("Meta data load finished, cost {} milliseconds.", System.currentTimeMillis() - start);
return result;
}
- loadSchemaMetaData(dataSourceMap)
protected SchemaMetaData loadSchemaMetaData(final Map<String, DataSource> dataSourceMap) throws SQLException {
// 获取配置的max.connections.size.per.query参数值,默认值是:1
int maxConnectionsSizePerQuery = getProperties().<Integer>getValue(ConfigurationPropertyKey.MAX_CONNECTIONS_SIZE_PER_QUERY);
boolean isCheckingMetaData = getProperties().<Boolean>getValue(ConfigurationPropertyKey.CHECK_TABLE_METADATA_ENABLED);
// ShardingMetaDataLoader.load方法,加载元数据
SchemaMetaData result = new ShardingMetaDataLoader(dataSourceMap, getRule(), maxConnectionsSizePerQuery, isCheckingMetaData)
.load(getDatabaseType());
// 对列元数据、索引元数据做一些装饰,不详细展开
result = SchemaMetaDataDecorator.decorate(result, getRule(), new ShardingTableMetaDataDecorator());
if (!getRule().getEncryptRule().getEncryptTableNames().isEmpty()) {
result = SchemaMetaDataDecorator.decorate(result, getRule().getEncryptRule(), new EncryptTableMetaDataDecorator());
}
return result;
}
public SchemaMetaData load(final DatabaseType databaseType) throws SQLException {
// 1、根据分片规则加载元数据信息
SchemaMetaData result = loadShardingSchemaMetaData(databaseType);
// 2、加载默认schema的元数据信息【此处耗时严重,加载了库中所有的表】
result.merge(loadDefaultSchemaMetaData(databaseType));
return result;
}
// 1、根据分片规则加载元数据信息
private SchemaMetaData loadShardingSchemaMetaData(final DatabaseType databaseType) throws SQLException {
log.info("Loading {} logic tables' meta data.", shardingRule.getTableRules().size());
Map<String, TableMetaData> tableMetaDataMap = new HashMap<>(shardingRule.getTableRules().size(), 1);
// 遍历分片规则,加载元数据
for (TableRule each : shardingRule.getTableRules()) {
tableMetaDataMap.put(each.getLogicTable(), load(each.getLogicTable(), databaseType));
}
return new SchemaMetaData(tableMetaDataMap);
}
// 2、加载默认schema的元数据信息【此处耗时严重,加载了库中所有的表】
private SchemaMetaData loadDefaultSchemaMetaData(final DatabaseType databaseType) throws SQLException {
// 找到默认数据源【注意该方法是如何查找的-重要】
Optional<String> actualDefaultDataSourceName = shardingRule.findActualDefaultDataSourceName();
// 如果默认数据源存在,则加载;否则返回空的SchemaMetaData
// 此次可想办法让findActualDefaultDataSourceName方法返回空,因为分表元数据在前面已经加载完毕
return actualDefaultDataSourceName.isPresent()
// 后面详细分析加载流程【重要】
? SchemaMetaDataLoader.load(dataSourceMap.get(actualDefaultDataSourceName.get()), maxConnectionsSizePerQuery, databaseType.getName())
: new SchemaMetaData(Collections.emptyMap());
}
- shardingRule.findActualDefaultDataSourceName();
public Optional<String> findActualDefaultDataSourceName() {
// 获取默认数据源
String defaultDataSourceName = shardingDataSourceNames.getDefaultDataSourceName();
if (Strings.isNullOrEmpty(defaultDataSourceName)) {
return Optional.empty();
}
Optional<String> masterDefaultDataSourceName = findMasterDataSourceName(defaultDataSourceName);
return masterDefaultDataSourceName.isPresent() ? masterDefaultDataSourceName : Optional.of(defaultDataSourceName);
}
// 如果dataSourceNames只配置了1个,则获取配置的这个;否则返回配置的defaultDataSourceName【项目中如果没有配置,则返回空】
// 我们项目中只配置了1个【没有分库,只分表】
public String getDefaultDataSourceName() {
return 1 == dataSourceNames.size() ? dataSourceNames.iterator().next() : shardingRuleConfig.getDefaultDataSourceName();
}
- ShardingMetaDataLoader#load(重要)
public static SchemaMetaData load(final DataSource dataSource, final int maxConnectionCount, final String databaseType) throws SQLException {
List<String> tableNames;
try (Connection connection = dataSource.getConnection()) {
// 首先获取数据库中【所有的表】
tableNames = loadAllTableNames(connection, databaseType);
}
log.info("Loading {} tables' meta data.", tableNames.size());
if (0 == tableNames.size()) {
return new SchemaMetaData(Collections.emptyMap());
}
// maxConnectionCount就是前文提到的max.connections.size.per.query(默认值是:1)
// max.connections.size.per.query参与了分组,因为默认值是:1,所以tableGroups.size() = 1
// 此次我们可以调大该值,走下面的异步加载流程【注意不要超过数据库连接池的最大配置】
List<List<String>> tableGroups = Lists.partition(tableNames, Math.max(tableNames.size() / maxConnectionCount, 1));
Map<String, TableMetaData> tableMetaDataMap =
1 == tableGroups.size()
// tableGroups.size()为1,同步加载
? load(dataSource.getConnection(), tableGroups.get(0), databaseType)
// 否则,异步加载
: asyncLoad(dataSource, maxConnectionCount, tableNames, tableGroups, databaseType);
return new SchemaMetaData(tableMetaDataMap);
}
// 同步加载
private static Map<String, TableMetaData> load(final Connection connection, final Collection<String> tables, final String databaseType) throws SQLException {
try (Connection con = connection) {
Map<String, TableMetaData> result = new LinkedHashMap<>();
for (String each : tables) {
// 加载列元数据、和索引元数据
result.put(each, new TableMetaData(ColumnMetaDataLoader.load(con, each, databaseType), IndexMetaDataLoader.load(con, each, databaseType)));
}
return result;
}
}
// 异步加载
private static Map<String, TableMetaData> asyncLoad(final DataSource dataSource, final int maxConnectionCount, final List<String> tableNames,
final List<List<String>> tableGroups, final String databaseType) throws SQLException {
Map<String, TableMetaData> result = new ConcurrentHashMap<>(tableNames.size(), 1);
// 开启线程池
ExecutorService executorService = Executors.newFixedThreadPool(Math.min(tableGroups.size(), maxConnectionCount));
Collection<Future<Map<String, TableMetaData>>> futures = new LinkedList<>();
for (List<String> each : tableGroups) {
futures.add(executorService.submit(() -> load(dataSource.getConnection(), each, databaseType)));
}
for (Future<Map<String, TableMetaData>> each : futures) {
try {
// 异步变同步
result.putAll(each.get());
} catch (final InterruptedException | ExecutionException ex) {
if (ex.getCause() instanceof SQLException) {
throw (SQLException) ex.getCause();
}
Thread.currentThread().interrupt();
}
}
return result;
}
- ColumnMetaDataLoader.load
public static Collection<ColumnMetaData> load(final Connection connection, final String table, final String databaseType) throws SQLException {
if (!isTableExist(connection, connection.getCatalog(), table, databaseType)) {
return Collections.emptyList();
}
Collection<ColumnMetaData> result = new LinkedList<>();
Collection<String> primaryKeys = loadPrimaryKeys(connection, table, databaseType);
List<String> columnNames = new ArrayList<>();
List<Integer> columnTypes = new ArrayList<>();
List<String> columnTypeNames = new ArrayList<>();
List<Boolean> isPrimaryKeys = new ArrayList<>();
List<Boolean> isCaseSensitives = new ArrayList<>();
try (ResultSet resultSet = connection.getMetaData().getColumns(connection.getCatalog(), JdbcUtil.getSchema(connection, databaseType), table, "%")) {
while (resultSet.next()) {
String columnName = resultSet.getString(COLUMN_NAME);
columnTypes.add(resultSet.getInt(DATA_TYPE));
columnTypeNames.add(resultSet.getString(TYPE_NAME));
isPrimaryKeys.add(primaryKeys.contains(columnName));
columnNames.add(columnName);
}
}
try (ResultSet resultSet = connection.createStatement().executeQuery(generateEmptyResultSQL(table, databaseType))) {
for (String each : columnNames) {
isCaseSensitives.add(resultSet.getMetaData().isCaseSensitive(resultSet.findColumn(each)));
}
}
for (int i = 0; i < columnNames.size(); i++) {
// TODO load auto generated from database meta data
result.add(new ColumnMetaData(columnNames.get(i), columnTypes.get(i), columnTypeNames.get(i), isPrimaryKeys.get(i), false, isCaseSensitives.get(i)));
}
return result;
}
- IndexMetaDataLoader.load
public static Collection<IndexMetaData> load(final Connection connection, final String table, final String databaseType) throws SQLException {
Collection<IndexMetaData> result = new HashSet<>();
try (ResultSet resultSet = connection.getMetaData().getIndexInfo(connection.getCatalog(), JdbcUtil.getSchema(connection, databaseType), table, false, false)) {
while (resultSet.next()) {
String indexName = resultSet.getString(INDEX_NAME);
if (null != indexName) {
result.add(new IndexMetaData(indexName));
}
}
}
return result;
}
- 列元数据、和索引元数据一览
// 列元数据
public class ColumnMetaData {
// 列名
private final String name;
// 类型
private final int dataType;
// 类型名称
private final String dataTypeName;
// 是否是主键
private final boolean primaryKey;
// 是否自动生成
private final boolean generated;
// 是否大小写敏感
private final boolean caseSensitive;
}
// 索引元数据
public final class IndexMetaData {
// 索引名称
private final String name;
}
- 加载流程一览
三、如何解决元数据加载耗时问题
- 调大max.connections.size.per.query,注意不要超过数据库连接池的最大配置。
- 配置两个数据源,数据源2和数据源1连接信息保持一致【仅仅配置数据源2,但实际不使用数据源2】。
- 采用分库分表。
- 升级版本到5.x【5.x版本对元数据的加载做了优化:多线程加载,且相同分表只加载一个】。