在自定义数据集上实现OpenAI CLIP

人工智能
在2021年1月,OpenAI宣布了两个新模型:DALL-E和CLIP,它们都是以某种方式连接文本和图像的多模态模型。CLIP全称是Contrastive Language–Image Pre-training,一种基于对比文本-图像对的预训练方法。

在2021年1月,OpenAI宣布了两个新模型:DALL-E和CLIP,它们都是以某种方式连接文本和图像的多模态模型。CLIP全称是Contrastive Language–Image Pre-training,一种基于对比文本-图像对的预训练方法。为什么要介绍CLIP呢?因为现在大火得Stable Diffusion 并不是单一模型,而是多个模型组成。其中会用到一个 Text encoder 将用户的文本输入进行编码,这个 text encoder 就是 CLIP 模型中 text encoder。

CLIP模型在训练时,可以给它一个输入句子,并提取最相关的图像来配合它。CLIP学习了一个完整的句子和它所描述的图像之间的关系。也就是说它是在完整的句子上训练的,而不是像“汽车”、“狗”等离散的分类,这一点对于应用至关重要。当训练完整的短语时,模型可以学习更多的东西,并识别照片和文本之间的模式。他们还证明,当在相当大的照片和与之相对应的句子数据集上进行训练时,该模型是可以作为分类器的。CLIP在发布的时候能在无任何微调的情况下(zero-shot ),在 ImageNet 数据集上的分类表现超 ResNets-50 微调后的效果,也就是说他是非常有用的。

图片

所以在本文中,我们将使用PyTorch中从头开始实现CLIP模型,以便我们对CLIP有一个更好的理解

这里就需要用到2个库:timm和transformers,我们先导入代码

import os
 import cv2
 import gc
 import numpy as np
 import pandas as pd
 import itertools
 from tqdm.autonotebook import tqdm
 import albumentations as A
 import matplotlib.pyplot as plt
 
 import torch
 from torch import nn
 import torch.nn.functional as F
 import timm
 from transformers import DistilBertModel, DistilBertConfig, DistilBertTokenizer

下一步就是预处理数据和通用配置config。config是一个普通的python文件,我们将所有的超参数放在里面,如果使用Jupyter Notebook的情况下,它是一个在Notebook开头定义的类。

class CFG:
    debug = False
    image_path = "../input/flickr-image-dataset/flickr30k_images/flickr30k_images"
    captions_path = "."
    batch_size = 32
    num_workers = 4
    head_lr = 1e-3
    image_encoder_lr = 1e-4
    text_encoder_lr = 1e-5
    weight_decay = 1e-3
    patience = 1
    factor = 0.8
    epochs = 2
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
    model_name = 'resnet50'
    image_embedding = 2048
    text_encoder_model = "distilbert-base-uncased"
    text_embedding = 768
    text_tokenizer = "distilbert-base-uncased"
    max_length = 200
 
    pretrained = True # for both image encoder and text encoder
    trainable = True # for both image encoder and text encoder
    temperature = 1.0
 
    # image size
    size = 224
 
    # for projection head; used for both image and text encoders
    num_projection_layers = 1
    projection_dim = 256 
    dropout = 0.1

还有一些我们自定义指标的辅助类

class AvgMeter:
    def __init__(self, name="Metric"):
        self.name = name
        self.reset()
 
    def reset(self):
        self.avg, self.sum, self.count = [0] * 3
 
    def update(self, val, count=1):
        self.count += count
        self.sum += val * count
        self.avg = self.sum / self.count
 
    def __repr__(self):
        text = f"{self.name}: {self.avg:.4f}"
        return text
 
 def get_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group["lr"]

我们的目标是描述图像和句子。所以数据集必须同时返回句子和图像。所以需要使用DistilBERT标记器对句子(标题)进行标记,然后将标记id (input_ids)和注意掩码提供给DistilBERT。DistilBERT比BERT 模型要小,但是模型的结果都差不多,所以我们选择使用它。

下一步就是使用HuggingFace tokenizer进行标记化。在__init__中获得的tokenizer对象,将在模型运行时加载。标题被填充并截断到预定的最大长度。在加载相关图像之前,我们将在__getitem__中加载一个编码的标题,这是一个带有键input_ids和attention_mask的字典,并对其进行转换和扩充(如果有的话)。然后把它变成一个张量,并以“image”作为键存储在字典中。最后我们将标题的原始文本与关键字“标题”一起输入字典。

class CLIPDataset(torch.utils.data.Dataset):
    def __init__(self, image_filenames, captions, tokenizer, transforms):
        """
        image_filenames and cpations must have the same length; so, if there are
        multiple captions for each image, the image_filenames must have repetitive
        file names 
        """
 
        self.image_filenames = image_filenames
        self.captions = list(captions)
        self.encoded_captions = tokenizer(
            list(captions), padding=True, truncatinotallow=True, max_length=CFG.max_length
        )
        self.transforms = transforms
 
    def __getitem__(self, idx):
        item = {
            key: torch.tensor(values[idx])
            for key, values in self.encoded_captions.items()
        }
 
        image = cv2.imread(f"{CFG.image_path}/{self.image_filenames[idx]}")
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        image = self.transforms(image=image)['image']
        item['image'] = torch.tensor(image).permute(2, 0, 1).float()
        item['caption'] = self.captions[idx]
 
        return item
 
 
    def __len__(self):
        return len(self.captions)
 
 
 
 def get_transforms(mode="train"):
    if mode == "train":
        return A.Compose(
            [
                A.Resize(CFG.size, CFG.size, always_apply=True),
                A.Normalize(max_pixel_value=255.0, always_apply=True),
            ]
        )
    else:
        return A.Compose(
            [
                A.Resize(CFG.size, CFG.size, always_apply=True),
                A.Normalize(max_pixel_value=255.0, always_apply=True),
            ]
        )

图像和文本编码器:我们将使用ResNet50作为图像编码器。

class ImageEncoder(nn.Module):
    """
    Encode images to a fixed size vector
    """
 
    def __init__(
        self, model_name=CFG.model_name, pretrained=CFG.pretrained, trainable=CFG.trainable
    ):
        super().__init__()
        self.model = timm.create_model(
            model_name, pretrained, num_classes=0, global_pool="avg"
        )
        for p in self.model.parameters():
            p.requires_grad = trainable
 
    def forward(self, x):
        return self.model(x)

使用DistilBERT作为文本编码器。使用CLS令牌的最终表示来获得句子的整个表示。

class TextEncoder(nn.Module):
    def __init__(self, model_name=CFG.text_encoder_model, pretrained=CFG.pretrained, trainable=CFG.trainable):
        super().__init__()
        if pretrained:
            self.model = DistilBertModel.from_pretrained(model_name)
        else:
            self.model = DistilBertModel(cnotallow=DistilBertConfig())
             
        for p in self.model.parameters():
            p.requires_grad = trainable
 
        # we are using the CLS token hidden representation as the sentence's embedding
        self.target_token_idx = 0
 
    def forward(self, input_ids, attention_mask):
        output = self.model(input_ids=input_ids, attention_mask=attention_mask)
        last_hidden_state = output.last_hidden_state
        return last_hidden_state[:, self.target_token_idx, :]

上面的代码已经将图像和文本编码为固定大小的向量(图像2048,文本768),我们需要图像和文本具有相似的尺寸,以便能够比较它们,所以我们把2048维和768维向量投影到256维(projection_dim),只有维度相同我们才能比较它们。

class ProjectionHead(nn.Module):
    def __init__(
        self,
        embedding_dim,
        projection_dim=CFG.projection_dim,
        dropout=CFG.dropout
    ):
        super().__init__()
        self.projection = nn.Linear(embedding_dim, projection_dim)
        self.gelu = nn.GELU()
        self.fc = nn.Linear(projection_dim, projection_dim)
        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(projection_dim)
     
    def forward(self, x):
        projected = self.projection(x)
        x = self.gelu(projected)
        x = self.fc(x)
        x = self.dropout(x)
        x = x + projected
        x = self.layer_norm(x)
        return x

所以最后我们的CLIP模型就是这样:

class CLIPModel(nn.Module):
    def __init__(
        self,
        temperature=CFG.temperature,
        image_embedding=CFG.image_embedding,
        text_embedding=CFG.text_embedding,
    ):
        super().__init__()
        self.image_encoder = ImageEncoder()
        self.text_encoder = TextEncoder()
        self.image_projection = ProjectionHead(embedding_dim=image_embedding)
        self.text_projection = ProjectionHead(embedding_dim=text_embedding)
        self.temperature = temperature
 
    def forward(self, batch):
        # Getting Image and Text Features
        image_features = self.image_encoder(batch["image"])
        text_features = self.text_encoder(
            input_ids=batch["input_ids"], attention_mask=batch["attention_mask"]
        )
        # Getting Image and Text Embeddings (with same dimension)
        image_embeddings = self.image_projection(image_features)
        text_embeddings = self.text_projection(text_features)
 
        # Calculating the Loss
        logits = (text_embeddings @ image_embeddings.T) / self.temperature
        images_similarity = image_embeddings @ image_embeddings.T
        texts_similarity = text_embeddings @ text_embeddings.T
        targets = F.softmax(
            (images_similarity + texts_similarity) / 2 * self.temperature, dim=-1
        )
        texts_loss = cross_entropy(logits, targets, reductinotallow='none')
        images_loss = cross_entropy(logits.T, targets.T, reductinotallow='none')
        loss = (images_loss + texts_loss) / 2.0 # shape: (batch_size)
        return loss.mean()
 
 #这里还加了一个交叉熵函数
 def cross_entropy(preds, targets, reductinotallow='none'):
    log_softmax = nn.LogSoftmax(dim=-1)
    loss = (-targets * log_softmax(preds)).sum(1)
    if reduction == "none":
        return loss
    elif reduction == "mean":
        return loss.mean()

这里需要说明下,CLIP使用 symmetric cross entropy 作为损失函数,可以降低噪音影响,提高模型鲁棒性,我们这里为了简单只是用cross entropy 。

我们可以进行测试:

# A simple Example
 
 batch_size = 4
 dim = 256
 embeddings = torch.randn(batch_size, dim)
 out = embeddings @ embeddings.T
 print(F.softmax(out, dim=-1))

下一步就是训练了,有一些函数可以帮助我们加载训练和验证的dataloader

def make_train_valid_dfs():
    dataframe = pd.read_csv(f"{CFG.captions_path}/captions.csv")
    max_id = dataframe["id"].max() + 1 if not CFG.debug else 100
    image_ids = np.arange(0, max_id)
    np.random.seed(42)
    valid_ids = np.random.choice(
        image_ids, size=int(0.2 * len(image_ids)), replace=False
    )
    train_ids = [id_ for id_ in image_ids if id_ not in valid_ids]
    train_dataframe = dataframe[dataframe["id"].isin(train_ids)].reset_index(drop=True)
    valid_dataframe = dataframe[dataframe["id"].isin(valid_ids)].reset_index(drop=True)
    return train_dataframe, valid_dataframe
 
 
 def build_loaders(dataframe, tokenizer, mode):
    transforms = get_transforms(mode=mode)
    dataset = CLIPDataset(
        dataframe["image"].values,
        dataframe["caption"].values,
        tokenizer=tokenizer,
        transforms=transforms,
    )
    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=CFG.batch_size,
        num_workers=CFG.num_workers,
        shuffle=True if mode == "train" else False,
    )
    return dataloader

然后就是训练和评估

def train_epoch(model, train_loader, optimizer, lr_scheduler, step):
    loss_meter = AvgMeter()
    tqdm_object = tqdm(train_loader, total=len(train_loader))
    for batch in tqdm_object:
        batch = {k: v.to(CFG.device) for k, v in batch.items() if k != "caption"}
        loss = model(batch)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if step == "batch":
            lr_scheduler.step()
 
        count = batch["image"].size(0)
        loss_meter.update(loss.item(), count)
 
        tqdm_object.set_postfix(train_loss=loss_meter.avg, lr=get_lr(optimizer))
    return loss_meter
 
 
 def valid_epoch(model, valid_loader):
    loss_meter = AvgMeter()
 
    tqdm_object = tqdm(valid_loader, total=len(valid_loader))
    for batch in tqdm_object:
        batch = {k: v.to(CFG.device) for k, v in batch.items() if k != "caption"}
        loss = model(batch)
 
        count = batch["image"].size(0)
        loss_meter.update(loss.item(), count)
 
        tqdm_object.set_postfix(valid_loss=loss_meter.avg)
    return loss_meter

最后整合起来就是全部流程

def main():
    train_df, valid_df = make_train_valid_dfs()
    tokenizer = DistilBertTokenizer.from_pretrained(CFG.text_tokenizer)
    train_loader = build_loaders(train_df, tokenizer, mode="train")
    valid_loader = build_loaders(valid_df, tokenizer, mode="valid")
 
 
    model = CLIPModel().to(CFG.device)
    params = [
        {"params": model.image_encoder.parameters(), "lr": CFG.image_encoder_lr},
        {"params": model.text_encoder.parameters(), "lr": CFG.text_encoder_lr},
        {"params": itertools.chain(
            model.image_projection.parameters(), model.text_projection.parameters()
        ), "lr": CFG.head_lr, "weight_decay": CFG.weight_decay}
    ]
    optimizer = torch.optim.AdamW(params, weight_decay=0.)
    lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
        optimizer, mode="min", patience=CFG.patience, factor=CFG.factor
    )
    step = "epoch"
 
    best_loss = float('inf')
    for epoch in range(CFG.epochs):
        print(f"Epoch: {epoch + 1}")
        model.train()
        train_loss = train_epoch(model, train_loader, optimizer, lr_scheduler, step)
        model.eval()
        with torch.no_grad():
            valid_loss = valid_epoch(model, valid_loader)
         
        if valid_loss.avg < best_loss:
            best_loss = valid_loss.avg
            torch.save(model.state_dict(), "best.pt")
            print("Saved Best Model!")
         
        lr_scheduler.step(valid_loss.avg)

应用:获取图像嵌入并找到匹配。

我们训练完成后如何实际应用呢?我们需要编写一个函数加载训练后的模型,为其提供验证集中的图像,并返回形状(valid_set_size, 256)和模型本身的image_embeddings。

def get_image_embeddings(valid_df, model_path):
    tokenizer = DistilBertTokenizer.from_pretrained(CFG.text_tokenizer)
    valid_loader = build_loaders(valid_df, tokenizer, mode="valid")
     
    model = CLIPModel().to(CFG.device)
    model.load_state_dict(torch.load(model_path, map_locatinotallow=CFG.device))
    model.eval()
     
    valid_image_embeddings = []
    with torch.no_grad():
        for batch in tqdm(valid_loader):
            image_features = model.image_encoder(batch["image"].to(CFG.device))
            image_embeddings = model.image_projection(image_features)
            valid_image_embeddings.append(image_embeddings)
    return model, torch.cat(valid_image_embeddings)
 _, valid_df = make_train_valid_dfs()
 model, image_embeddings = get_image_embeddings(valid_df, "best.pt")
 
 def find_matches(model, image_embeddings, query, image_filenames, n=9):
    tokenizer = DistilBertTokenizer.from_pretrained(CFG.text_tokenizer)
    encoded_query = tokenizer([query])
    batch = {
        key: torch.tensor(values).to(CFG.device)
        for key, values in encoded_query.items()
    }
    with torch.no_grad():
        text_features = model.text_encoder(
            input_ids=batch["input_ids"], attention_mask=batch["attention_mask"]
        )
        text_embeddings = model.text_projection(text_features)
     
    image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1)
    text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1)
    dot_similarity = text_embeddings_n @ image_embeddings_n.T
     
    values, indices = torch.topk(dot_similarity.squeeze(0), n * 5)
    matches = [image_filenames[idx] for idx in indices[::5]]
     
    _, axes = plt.subplots(3, 3, figsize=(10, 10))
    for match, ax in zip(matches, axes.flatten()):
        image = cv2.imread(f"{CFG.image_path}/{match}")
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        ax.imshow(image)
        ax.axis("off")
     
    plt.show()

调用方法如下:

find_matches(model, 
              image_embeddings,
              query="one dog sitting on the grass",
              image_filenames=valid_df['image'].values,
              n=9)

可以看到我们自定义效果还是不错的(但是图里面有个猫,哈)。也就是说CLIP这种方法在小数据集上自定义也是可行的。

以下是本文的代码和数据集:

https://www.kaggle.com/code/jyotidabas/simple-openai-clip-implementation

责任编辑:华轩 来源: DeepHub IMBA
相关推荐

2024-07-01 12:55:50

2012-02-02 13:45:28

JavaJSP

2018-08-21 13:05:07

Windows 10Windows回收站

2011-06-15 09:24:36

Qt Widget Model

2024-10-25 08:30:57

计算机视觉神经网络YOLOv8模型

2009-09-07 22:00:15

LINQ自定义

2023-10-09 07:37:01

2022-05-18 07:44:13

自定义菜单前端

2023-01-12 12:20:29

YOLOv8模型

2024-10-16 16:49:44

定向边界框目标检测YOLOv8

2021-07-16 07:00:11

PyTorch DatasetsDataLoader

2011-06-20 16:54:40

Qt Widget model

2023-08-11 09:16:14

2024-11-06 16:56:51

2015-02-12 15:33:43

微信SDK

2022-04-01 15:59:22

SQLPostgreSQL审计

2013-01-09 17:22:38

Android开发Camera

2009-09-03 13:34:03

.NET自定义控件

2015-07-29 10:31:16

Java缓存算法

2023-01-03 07:40:27

自定义滑块组件
点赞
收藏

51CTO技术栈公众号