SpringCache源码分析,你学会了吗?

开发 前端
ProxyCachingConfiguration总的来说就是声明了一个SpringCacheAnnotationParser和一个CacheInterceptor。在使用自定义的切点类,在切点前后切入一个CacheInterceptor来实现缓存的逻辑。

1、入口说明

@EnableCaching是开启SpringCache的一个总开关,开启时候我们的缓存相关注解才会生效,所以我们@EnableCaching开始作为入口进行分析,

2、分析@EnableCaching注解

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Import(CachingConfigurationSelector.class) // 这里有一个Import,导入了一个Selector类
public @interface EnableCaching {

    // 是否创建cglib代理,默认为false, 也就是使用jdk动态代理
    boolean proxyTargetClass() default false;

    // 增强模式 默认使用JDK动态代理,引入cglib可以使用ASPECTJ
    AdviceMode mode() default AdviceMode.PROXY;

    // 排序字段
    int order() default Ordered.LOWEST_PRECEDENCE;

}

2.1、分析导入的CachingConfigurationSelector类

public class CachingConfigurationSelector extends AdviceModeImportSelector<EnableCaching> {

    // ...此处省略一万行代码

    // CachingConfigurationSelector继承了AdviceModeImportSelector, 而AdviceModeImportSelector又实现了ImportSelector
    // 所以我们实现类selectImports,用于返回要导入的配置类列表
    @Override
    public String[] selectImports(AdviceMode adviceMode) {
        // 如果是jdk动态代理,走getProxyImports逻辑。如果是cglib动态代理,走getAspectJImports逻辑
        switch (adviceMode) {
            case PROXY:
                return getProxyImports();
            case ASPECTJ:
                return getAspectJImports();
            default:
                return null;
        }
    }

    // 获取要进行自动配置的配置类
    private String[] getProxyImports() {
        List<String> result = new ArrayList<>(3);
        // 这里添加了两个类,AutoProxyRegistrar(自动代理注册器),ProxyCachingConfiguration(代理缓存配置类)
        // AutoProxyRegistrar点进去可以发现,里面其实就是提供了registerBeanDefinitions方法用于注册BeanDefinition
        result.add(AutoProxyRegistrar.class.getName());
        // ProxyCachingConfiguration点进去发现,配置类缓存相关的一些Bean(就是SpringCache的一些核心Bean)
        result.add(ProxyCachingConfiguration.class.getName());
        if (jsr107Present && jcacheImplPresent) {
            result.add(PROXY_JCACHE_CONFIGURATION_CLASS);
        }
        return StringUtils.toStringArray(result);
    }

    // ...此处省略一万行代码
}

CachingConfigurationSelector继承了AdviceModeImportSelector, 而AdviceModeImportSelector又实现了ImportSelector,所以我们实现了selectImports方法,用于返回要导入的配置类列表.

selectImports会去判断,如果是jdk动态代理,走getProxyImports逻辑。如果是cglib动态代理,走getAspectJImports逻辑。

我们直接关注JDK动态代理的方法getProxyImports。这里面添加了两个类AutoProxyRegistrar和ProxyCachingConfiguration。

AutoProxyRegistrar点进去可以发现,里面其实就是提供了registerBeanDefinitions方法用于注册BeanDefinition。

ProxyCachingConfiguration点进去发现,配置类缓存相关的一些Bean(就是SpringCache的一些核心Bean),所以我们会重点关注ProxyCachingConfiguration并着重分析。

2.1.1、分析ProxyCachingConfiguration配置类

@Configuration(proxyBeanMethods = false)
@Role(BeanDefinition.ROLE_INFRASTRUCTURE)
public class ProxyCachingConfiguration extends AbstractCachingConfiguration {

    // BeanFactoryCacheOperationSourceAdvisor是对CacheOperationSource进行增强,其实就是添加一个拦截器,用于获取相关缓存的注解信息
    // 所以有些逻辑会在CacheInterceptor里
    @Bean(name = CacheManagementConfigUtils.CACHE_ADVISOR_BEAN_NAME)
    @Role(BeanDefinition.ROLE_INFRASTRUCTURE)
    public BeanFactoryCacheOperationSourceAdvisor cacheAdvisor(
            CacheOperationSource cacheOperationSource, CacheInterceptor cacheInterceptor) {

        BeanFactoryCacheOperationSourceAdvisor advisor = new BeanFactoryCacheOperationSourceAdvisor();
        advisor.setCacheOperationSource(cacheOperationSource);
        advisor.setAdvice(cacheInterceptor);
        if (this.enableCaching != null) {
            advisor.setOrder(this.enableCaching.<Integer>getNumber("order"));
        }
        return advisor;
    }

    // 定义一个CacheOperationSource,主要用于获取类或者方法上的注解。
    @Bean
    @Role(BeanDefinition.ROLE_INFRASTRUCTURE)
    public CacheOperationSource cacheOperationSource() {
        return new AnnotationCacheOperationSource();
    }

    // 定义了一个拦截器,该拦截器用于用于拦截缓存相关注解,做AOP操作。比如先查询缓存,查询到直接返回,查询不到就执行方法体,将结果写入缓存。
    @Bean
    @Role(BeanDefinition.ROLE_INFRASTRUCTURE)
    public CacheInterceptor cacheInterceptor(CacheOperationSource cacheOperationSource) {
        CacheInterceptor interceptor = new CacheInterceptor();
        // 缓存拦截器在这里注入了cacheManager(缓存管理器)
        interceptor.configure(this.errorHandler, this.keyGenerator, this.cacheResolver, this.cacheManager);
        interceptor.setCacheOperationSource(cacheOperationSource);
        return interceptor;
    }

}

来分析一下BeanFactoryCacheOperationSourceAdvisor

public class BeanFactoryCacheOperationSourceAdvisor extends AbstractBeanFactoryPointcutAdvisor {
    @Nullable
    private CacheOperationSource cacheOperationSource;

    // 定义我们自己的切点,缓存操作切点
    private final CacheOperationSourcePointcut pointcut = new CacheOperationSourcePointcut() {
        // 该切点存在一个方法,获取CacheOperationSource(获取切点的那些注解操作)。
        @Override
        @Nullable
        protected CacheOperationSource getCacheOperationSource() {
            return cacheOperationSource;
        }
    };
    
    // 使用该方法设置CacheOperationSource,在上一层有设置advisor.setCacheOperationSource(cacheOperationSource);
    // 把这个数据塞入BeanFactoryCacheOperationSourceAdvisor, 以便于在自定义的切点类CacheOperationSourcePointcut中可以获取
    public void setCacheOperationSource(CacheOperationSource cacheOperationSource) {
        this.cacheOperationSource = cacheOperationSource;
    }
    
    // 设置ClassFilter到CacheOperationSourcePointcut
    public void setClassFilter(ClassFilter classFilter) {
        this.pointcut.setClassFilter(classFilter);
    }

    // 重写getPointcut。也就是获取切点的方法,因为需要对切点进行增强
    @Override
    public Pointcut getPointcut() {
        return this.pointcut;
    }
}

BeanFactoryCacheOperationSourceAdvisor继承了AbstractBeanFactoryPointcutAdvisor,重写了Pointcut getPointcut()方法。

使用自定义的切点类CacheOperationSourcePointcut来作为切面的切点。而里面需要用到CacheOperationSource和ClassFilter。在BeanFactoryCacheOperationSourceAdvisor实例化时就已经设置。

而上面又执行了advisor.setAdvice(cacheInterceptor); 其实就是对这个切点添加了一个缓存拦截器,所以核心逻辑就在拦截器里面。

先再来看一下AnnotationCacheOperationSource

public class AnnotationCacheOperationSource extends AbstractFallbackCacheOperationSource implements Serializable {

    private final boolean publicMethodsOnly;

    // 缓存注解解析集合
    private final Set<CacheAnnotationParser> annotationParsers;
    
    public AnnotationCacheOperationSource() {
        this(true);
    }
    
    public AnnotationCacheOperationSource(boolean publicMethodsOnly) {
        this.publicMethodsOnly = publicMethodsOnly;
        // 重点:解析集合从SpringCacheAnnotationParser中获取,这个解析类就是解析注解的核心
        this.annotationParsers = Collections.singleton(new SpringCacheAnnotationParser());
    }
    
    // ...此处省略一万行代码

    // 判断是否时候选类
    @Override
    public boolean isCandidateClass(Class<?> targetClass) {
        for (CacheAnnotationParser parser : this.annotationParsers) {
            if (parser.isCandidateClass(targetClass)) {
                return true;
            }
        }
        return false;
    }

    // 重点:查找类级别的CacheOperation列表,就是看标注在类上的@Cacheable,@CacheEvict的集合
    @Override
    @Nullable
    protected Collection<CacheOperation> findCacheOperations(Class<?> clazz) {
        return determineCacheOperations(parser -> parser.parseCacheAnnotations(clazz));
    }

    // 重点:查找方法级别的CacheOperation列表,就是看标注在方法上的@Cacheable,@CacheEvict的集合
    @Override
    @Nullable
    protected Collection<CacheOperation> findCacheOperations(Method method) {
        return determineCacheOperations(parser -> parser.parseCacheAnnotations(method));
    }
    
    // ...此处省略一万行代码
}

接着看一下SpringCacheAnnotationParser

public class SpringCacheAnnotationParser implements CacheAnnotationParser, Serializable {

    private static final Set<Class<? extends Annotation>> CACHE_OPERATION_ANNOTATIONS = new LinkedHashSet<>(8);

    // 初始化缓存操作的注解集合
    static {
        CACHE_OPERATION_ANNOTATIONS.add(Cacheable.class);
        CACHE_OPERATION_ANNOTATIONS.add(CacheEvict.class);
        CACHE_OPERATION_ANNOTATIONS.add(CachePut.class);
        CACHE_OPERATION_ANNOTATIONS.add(Caching.class);
    }

    // 解析类级别的注解,封装为CacheOperation集合
    @Override
    @Nullable
    public Collection<CacheOperation> parseCacheAnnotations(Class<?> type) {
        DefaultCacheConfig defaultConfig = new DefaultCacheConfig(type);
        return parseCacheAnnotations(defaultConfig, type);
    }

    // 解析方法级别的注解,封装为CacheOperation集合
    @Override
    @Nullable
    public Collection<CacheOperation> parseCacheAnnotations(Method method) {
        DefaultCacheConfig defaultConfig = new DefaultCacheConfig(method.getDeclaringClass());
        return parseCacheAnnotations(defaultConfig, method);
    }

    // 解析注解
    @Nullable
    private Collection<CacheOperation> parseCacheAnnotations(DefaultCacheConfig cachingConfig, AnnotatedElement ae) {
        Collection<CacheOperation> ops = parseCacheAnnotations(cachingConfig, ae, false);
        if (ops != null && ops.size() > 1) {
            // More than one operation found -> local declarations override interface-declared ones...
            Collection<CacheOperation> localOps = parseCacheAnnotations(cachingConfig, ae, true);
            if (localOps != null) {
                return localOps;
            }
        }
        return ops;
    }

    // 具体解析注解的方法,包含了Cacheable,CacheEvict,CachePut,Caching等
    @Nullable
    private Collection<CacheOperation> parseCacheAnnotations(
            DefaultCacheConfig cachingConfig, AnnotatedElement ae, boolean localOnly) {

        Collection<? extends Annotation> anns = (localOnly ?
                AnnotatedElementUtils.getAllMergedAnnotations(ae, CACHE_OPERATION_ANNOTATIONS) :
                AnnotatedElementUtils.findAllMergedAnnotations(ae, CACHE_OPERATION_ANNOTATIONS));
        if (anns.isEmpty()) {
            return null;
        }

        final Collection<CacheOperation> ops = new ArrayList<>(1);
        anns.stream().filter(ann -> ann instanceof Cacheable).forEach(
                ann -> ops.add(parseCacheableAnnotation(ae, cachingConfig, (Cacheable) ann)));
        anns.stream().filter(ann -> ann instanceof CacheEvict).forEach(
                ann -> ops.add(parseEvictAnnotation(ae, cachingConfig, (CacheEvict) ann)));
        anns.stream().filter(ann -> ann instanceof CachePut).forEach(
                ann -> ops.add(parsePutAnnotation(ae, cachingConfig, (CachePut) ann)));
        anns.stream().filter(ann -> ann instanceof Caching).forEach(
                ann -> parseCachingAnnotation(ae, cachingConfig, (Caching) ann, ops));
        return ops;
    }
    // ...此处省略了一万行代码,基本这个类都是解析这些注解并封装为CacheOperation集合
}

所以,SpringCacheAnnotationParser的作用就是将这些注解解析出来,并且封装为Collection<CacheOperation>,供其他地方使用。

ProxyCachingConfiguration总的来说就是声明了一个SpringCacheAnnotationParser和一个CacheInterceptor。在使用自定义的切点类,在切点前后切入一个CacheInterceptor来实现缓存的逻辑。

所以我们就找到的缓存的核心类CacheInterceptor,并且在构造拦截器时,传入了cacheManager作为缓存管理。

2.1.2、分析CacheInterceptor类

public class CacheInterceptor extends CacheAspectSupport implements MethodInterceptor, Serializable {

    // 拦截原始方法的执行,在方法前后增加横切逻辑
    @Override
    @Nullable
    public Object invoke(final MethodInvocation invocation) throws Throwable {
        Method method = invocation.getMethod();
        
        CacheOperationInvoker aopAllianceInvoker = () -> {
            try {
                return invocation.proceed();
            }
            catch (Throwable ex) {
                throw new CacheOperationInvoker.ThrowableWrapper(ex);
            }
        };

        Object target = invocation.getThis();
        Assert.state(target != null, "Target must not be null");
        try {
            // 调用父类的execute方法,实现缓存的逻辑
            return execute(aopAllianceInvoker, target, method, invocation.getArguments());
        }
        catch (CacheOperationInvoker.ThrowableWrapper th) {
            throw th.getOriginal();
        }
    }

}

可以看到,这个类很简单,就是拿到原方法的invoke,然后通过父类CacheAspectSupport的execute方法实现缓存逻辑。

关注CacheAspectSupport的execute方法

public abstract class CacheAspectSupport extends AbstractCacheInvoker
        implements BeanFactoryAware, InitializingBean, SmartInitializingSingleton {

    protected final Log logger = LogFactory.getLog(getClass());

    private final Map<CacheOperationCacheKey, CacheOperationMetadata> metadataCache = new ConcurrentHashMap<>(1024);

    private final CacheOperationExpressionEvaluator evaluator = new CacheOperationExpressionEvaluator();

    @Nullable
    private CacheOperationSource cacheOperationSource;

    private SingletonSupplier<KeyGenerator> keyGenerator = SingletonSupplier.of(SimpleKeyGenerator::new);

    @Nullable
    private SingletonSupplier<CacheResolver> cacheResolver;

    @Nullable
    private BeanFactory beanFactory;

    private boolean initialized = false;

    @Nullable
    protected Object execute(CacheOperationInvoker invoker, Object target, Method method, Object[] args) {
        // 如果bean已经被初始化了,则调用相应的缓存增强
        if (this.initialized) {
            Class<?> targetClass = getTargetClass(target);
            CacheOperationSource cacheOperationSource = getCacheOperationSource();
            if (cacheOperationSource != null) {
                // 通过CacheOperationSource,获取所有的CacheOperation列表(就是那一堆标有缓存注解的类和方法的集合)
                Collection<CacheOperation> operations = cacheOperationSource.getCacheOperations(method, targetClass);
                if (!CollectionUtils.isEmpty(operations)) {
                    // 调用重载的execute方法
                    return execute(invoker, method,
                            new CacheOperationContexts(operations, method, args, target, targetClass));
                }
            }
        }

        // 否则,执行原方法返回即可
        return invoker.invoke();
    }


    // 执行方法(核心)
    @Nullable
    private Object execute(final CacheOperationInvoker invoker, Method method, CacheOperationContexts contexts) {
        // Special handling of synchronized invocation
        if (contexts.isSynchronized()) {
            CacheOperationContext context = contexts.get(CacheableOperation.class).iterator().next();
            if (isConditionPassing(context, CacheOperationExpressionEvaluator.NO_RESULT)) {
                Object key = generateKey(context, CacheOperationExpressionEvaluator.NO_RESULT);
                Cache cache = context.getCaches().iterator().next();
                try {
                    return wrapCacheValue(method, handleSynchronizedGet(invoker, key, cache));
                } catch (Cache.ValueRetrievalException ex) {
                    // Directly propagate ThrowableWrapper from the invoker,
                    // or potentially also an IllegalArgumentException etc.
                    ReflectionUtils.rethrowRuntimeException(ex.getCause());
                }
            } else {
                // No caching required, only call the underlying method
                return invokeOperation(invoker);
            }
        }

        // 如果存在@CacheEvict注解、并且标记为在调用前执行,调用processCacheEvicts进行缓存清除操作
        processCacheEvicts(contexts.get(CacheEvictOperation.class), true,
                CacheOperationExpressionEvaluator.NO_RESULT);

        // 如果存在Cacheable注解、调用findCachedItem查询缓存
        Cache.ValueWrapper cacheHit = findCachedItem(contexts.get(CacheableOperation.class));

        // 如果没有命中缓存,则调用cachePutRequests,存储在List<CachePutRequest>中,后续执行原始方法后会写入缓存
        List<CachePutRequest> cachePutRequests = new ArrayList<>();
        if (cacheHit == null) {
            collectPutRequests(contexts.get(CacheableOperation.class),
                    CacheOperationExpressionEvaluator.NO_RESULT, cachePutRequests);
        }

        Object cacheValue;
        Object returnValue;

        // 如果缓存命中且没有@CachePut注解,使用缓存的值作为返回值
        if (cacheHit != null && !hasCachePut(contexts)) {
            // If there are no put requests, just use the cache hit
            cacheValue = cacheHit.get();
            returnValue = wrapCacheValue(method, cacheValue);
        }
        // 缓存没有命中或者有@CachePut注解
        else {
            // 调用原始方法作为返回值
            returnValue = invokeOperation(invoker);
            // 将原始方法的返回值作为缓存值
            cacheValue = unwrapReturnValue(returnValue);
        }

        // 如果有@CachePut注解,则新增到cachePutRequests
        collectPutRequests(contexts.get(CachePutOperation.class), cacheValue, cachePutRequests);

        // 缓存未命中或者存在@CachePut注解,调用CachePutRequest的apply方法将数据写入缓存
        for (CachePutRequest cachePutRequest : cachePutRequests) {
            cachePutRequest.apply(cacheValue);
        }

        // 如果有@CacheEvict注解,并且标记为在调用后执行,则还需要执行清除缓存操作
        processCacheEvicts(contexts.get(CacheEvictOperation.class), false, cacheValue);

        return returnValue;
    }
    // 此处省略一万行代码
}

总结来说,

  • 如果存在@CacheEvict注解,并且标记在方法执行前执行,就执行清除缓存相关操作。
  • 使用findCachedItem获取缓存,缓存没有命中,加入collectPutRequests,后续进行写入缓存操作。
  • 如果命中缓存并且没有@CachePut注解,获取命中的值作为方法的返回值
  • 如果没有命中,或者包含了@CachePut注解,加入collectPutRequests,后续进行写入缓存操作。
  • 遍历cachePutRequests,将需要写入缓存的数据写入缓存
  • 如果存在@CacheEvict注解,并且标记在方法执行后执行,就执行清除缓存相关操作。

还没完呢,因为我们定义的CacheManager怎么没有用到呢?我们继续跟踪下去,以get缓存方法为例子分析。

关注findCachedItem获取缓存方法

@Nullable
private Cache.ValueWrapper findCachedItem(Collection<CacheOperationContext> contexts) {
    // 遍历上下文列表
    Object result = CacheOperationExpressionEvaluator.NO_RESULT;
    for (CacheOperationContext context : contexts) {
        if (isConditionPassing(context, result)) {
            Object key = generateKey(context, result);
            // 根据生成的key获取缓存值
            Cache.ValueWrapper cached = findInCaches(context, key);
            if (cached != null) {
                return cached;
            }
            else {
                if (logger.isTraceEnabled()) {
                    logger.trace("No cache entry for key '" + key + "' in cache(s) " + context.getCacheNames());
                }
            }
        }
    }
    return null;
}

关注findInCaches获取缓存方法

@Nullable
private Cache.ValueWrapper findInCaches(CacheOperationContext context, Object key) {
    // 遍历缓存集合(getCaches),使用缓存的key去和获取缓存
    for (Cache cache : context.getCaches()) {
        // 最终是使用Cache接口的get方法去获取缓存的
        Cache.ValueWrapper wrapper = doGet(cache, key);
        if (wrapper != null) {
            if (logger.isTraceEnabled()) {
                logger.trace("Cache entry for key '" + key + "' found in cache '" + cache.getName() + "'");
            }
            return wrapper;
        }
    }
    return null;
}

关注doGet获取缓存方法

@Nullable
protected Cache.ValueWrapper doGet(Cache cache, Object key) {
    try {
        return cache.get(key);
    }
    catch (RuntimeException ex) {
        getErrorHandler().handleCacheGetError(ex, cache, key);
        return null;  // If the exception is handled, return a cache miss
    }
}

我们发现,最终是通过Cache接口的get方法去获取缓存的,那么我们只要知道Cache集合对象是在哪里传入进来的就清楚了整个逻辑。

重新回到execute方法

@Nullable
protected Object execute(CacheOperationInvoker invoker, Object target, Method method, Object[] args) {
    // Check whether aspect is enabled (to cope with cases where the AJ is pulled in automatically)
    if (this.initialized) {
        Class<?> targetClass = getTargetClass(target);
        CacheOperationSource cacheOperationSource = getCacheOperationSource();
        if (cacheOperationSource != null) {
            Collection<CacheOperation> operations = cacheOperationSource.getCacheOperations(method, targetClass);
            if (!CollectionUtils.isEmpty(operations)) {
                // 这里创建了一个CacheOperationContexts,我们有理由猜测CacheOperationContext.getCaches方法就是在这里面
                return execute(invoker, method,
                        new CacheOperationContexts(operations, method, args, target, targetClass));
            }
        }
    }

    return invoker.invoke();
}

跟踪CacheOperationContexts

private class CacheOperationContexts {
    // 就是一个CacheOperationContext的集合,key是CacheOperation或者其子类
    private final MultiValueMap<Class<? extends CacheOperation>, CacheOperationContext> contexts;

    // 是否开启了sync=true属性
    private final boolean sync;

    public CacheOperationContexts(Collection<? extends CacheOperation> operations, Method method,
            Object[] args, Object target, Class<?> targetClass) {
        // 根据CacheOperation集合,方法,参数创建了一个CacheOperationContext集合
        this.contexts = new LinkedMultiValueMap<>(operations.size());
        for (CacheOperation op : operations) {
            // 重点:getOperationContext是具体创建CacheOperationContext的方法
            this.contexts.add(op.getClass(), getOperationContext(op, method, args, target, targetClass));
        }
        
        // 获取sync属性并赋值给this.sync
        this.sync = determineSyncFlag(method);
    }

    public Collection<CacheOperationContext> get(Class<? extends CacheOperation> operationClass) {
        Collection<CacheOperationContext> result = this.contexts.get(operationClass);
        return (result != null ? result : Collections.emptyList());
    }

    public boolean isSynchronized() {
        return this.sync;
    }
    
    // ...此处省略了一万行代码
}

关注getOperationContext创建CacheOperationContext

protected CacheOperationContext getOperationContext(
        CacheOperation operation, Method method, Object[] args, Object target, Class<?> targetClass) {
    
    CacheOperationMetadata metadata = getCacheOperationMetadata(operation, method, targetClass);
    // 其实就是实例化一个CacheOperationContext
    return new CacheOperationContext(metadata, args, target);
}

其实就是拿到CacheOperationMetadata(CacheOperation的元数据信息),然后传给CacheOperationContext进行实例化CacheOperationContext。

关注CacheOperationContext的构造方法

上面实例化了CacheOperationContext,所以其构造方法内一定做了写什么事情。比如初始化操作。

// 缓存的集合
private final Collection<? extends Cache> caches;

public CacheOperationContext(CacheOperationMetadata metadata, Object[] args, Object target) {
    this.metadata = metadata;
    this.args = extractArgs(metadata.method, args);
    this.target = target;
    // 初始化了缓存名称列表和缓存集合
    this.caches = CacheAspectSupport.this.getCaches(this, metadata.cacheResolver);
    this.cacheNames = createCacheNames(this.caches);
}

关注getCaches(获取缓存集合)

protected Collection<? extends Cache> getCaches(
        CacheOperationInvocationContext<CacheOperation> context, CacheResolver cacheResolver) {
    
    // 这里可以知道是通过CacheResolver来获取的缓存集合
    Collection<? extends Cache> caches = cacheResolver.resolveCaches(context);
    if (caches.isEmpty()) {
        throw new IllegalStateException("No cache could be resolved for '" +
                context.getOperation() + "' using resolver '" + cacheResolver +
                "'. At least one cache should be provided per cache operation.");
    }
    return caches;
}

关注CacheResolver以及实现类

@FunctionalInterface
public interface CacheResolver {

	// 根据CacheOperationInvocationContext获取缓存集合
	Collection<? extends Cache> resolveCaches(CacheOperationInvocationContext<?> context);

}

CacheResolver的抽象实现类AbstractCacheResolver

public abstract class AbstractCacheResolver implements CacheResolver, InitializingBean {

    // 这里就有CacheManager(缓存管理器)
	@Nullable
	private CacheManager cacheManager;
	
	protected AbstractCacheResolver() {
	}
	
	// 构造注入
	protected AbstractCacheResolver(CacheManager cacheManager) {
		this.cacheManager = cacheManager;
	}

	// set注入
	public void setCacheManager(CacheManager cacheManager) {
		this.cacheManager = cacheManager;
	}

    // 获取CacheManager
	public CacheManager getCacheManager() {
		Assert.state(this.cacheManager != null, "No CacheManager set");
		return this.cacheManager;
	}

	@Override
	public void afterPropertiesSet()  {
		Assert.notNull(this.cacheManager, "CacheManager is required");
	}
	
	// 获取缓存集合
	@Override
	public Collection<? extends Cache> resolveCaches(CacheOperationInvocationContext<?> context) {
        // 先获取缓存名称
		Collection<String> cacheNames = getCacheNames(context);
		if (cacheNames == null) {
			return Collections.emptyList();
		}
		Collection<Cache> result = new ArrayList<>(cacheNames.size());
		// 遍历名称,通过CacheManager获取缓存,加入缓存集合
		for (String cacheName : cacheNames) {
			Cache cache = getCacheManager().getCache(cacheName);
			if (cache == null) {
				throw new IllegalArgumentException("Cannot find cache named '" +
						cacheName + "' for " + context.getOperation());
			}
			result.add(cache);
		}
		return result;
	}

	// 获取缓存名称集合
	@Nullable
	protected abstract Collection<String> getCacheNames(CacheOperationInvocationContext<?> context);

}

而我们的CacheManager默认使用SimpleCacheManager,我们注入了CustomRedisCacheManager, 所以会调用CustomRedisCacheManager的getCache方法获取缓存。

而getCache方法在父类AbstractCacheManager已经实现了。

// SpringCache最底层的数据结构就是以一个ConcurrentMap
private final ConcurrentMap<String, Cache> cacheMap = new ConcurrentHashMap<>(16);

@Override
@Nullable
public Cache getCache(String name) {
    // 先从cacheMap中获取Cache, 获取到了直接返回
    Cache cache = this.cacheMap.get(name);
    if (cache != null) {
        return cache;
    }

    // 获取不到,使用双重检测所写入数据到cacheMap
    Cache missingCache = getMissingCache(name);
    if (missingCache != null) {
        // Fully synchronize now for missing cache registration
        synchronized (this.cacheMap) {
            cache = this.cacheMap.get(name);
            if (cache == null) {
                cache = decorateCache(missingCache);
                this.cacheMap.put(name, cache);
                updateCacheNames(name);
            }
        }
    }
    return cache;
}

到了这里,SpringCache的流程我们就真正的清楚了。

所以,SpringCache的源码分析就到此为止了。

责任编辑:武晓燕 来源: 今日头条
相关推荐

2022-10-18 17:59:46

Bootstrap源码父类

2023-05-08 07:41:07

Linux内核ELF文件

2023-03-08 08:42:55

MySQLcost量化

2023-06-27 07:21:51

前端开发坑点

2022-09-22 12:03:14

网络安全事件

2023-08-01 12:51:18

WebGPT机器学习模型

2024-01-02 12:05:26

Java并发编程

2024-02-04 00:00:00

Effect数据组件

2024-01-19 08:25:38

死锁Java通信

2023-01-10 08:43:15

定义DDD架构

2023-07-26 13:11:21

ChatGPT平台工具

2024-07-31 08:26:47

2024-09-27 10:27:50

2022-11-06 14:46:28

脚本windows文件

2022-06-16 07:50:35

数据结构链表

2023-01-31 08:02:18

2023-10-06 14:49:21

SentinelHystrixtimeout

2024-03-06 08:28:16

设计模式Java

2023-05-05 06:54:07

MySQL数据查询

2022-12-06 07:53:33

MySQL索引B+树
点赞
收藏

51CTO技术栈公众号