基于 ChatGLM-6B 部署本地私有化 ChatGPT

人工智能
优化的模型架构和大小: 吸取 GLM-130B 训练经验,修正了二维 RoPE 位置编码实现,使用传统FFN结构。6B(62亿)的参数大小,也使得研究者和个人开发者自己微调和部署 ChatGLM-6B 成为可能。

最近chatGPT很火,但是用起来需要翻墙,国内也有很多模型,什么百度的文心一言、阿里的盘古、还有科大讯飞的模型等等,那么今天我们就来介绍下怎么在本地自己部署自己的聊天模型,也可以学习很多知识。

一、开源模型

1、ChatGLM-6B介绍

  • 清华大学知识工程 (KEG) 实验室和智谱AI公司与于2023年共同训练的语言模型;ChatGLM-6B 参考了 ChatGPT 的设计思路,在千 亿基座模型 GLM-130B 中注入了代码预训练,通过有监督微调等技术实现与人类意图对齐(即让机 器的回答符合人类的期望和价值观);
  • ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数;
  • 结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存); 
  • ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答;

2、ChatGLM-6B 有如下特点

  • 充分的中英双语预训练: ChatGLM-6B 在 1:1 比例的中英语料上训练了 1T 的 token 量,兼具双语能力;
  • 优化的模型架构和大小: 吸取 GLM-130B 训练经验,修正了二维 RoPE 位置编码实现,使用传统FFN结构。6B(62亿)的参数大小,也使得研究者和个人开发者自己微调和部署 ChatGLM-6B 成为可能;
  • 较低的部署门槛: FP16 半精度下,ChatGLM-6B 需要至少 13GB 的显存进行推理,结合模型量化技术,这一需求可以进一步降低到 10GB(INT8) 和 6GB(INT4), 使得 ChatGLM-6B 可以部署在消费级显卡上;
  • 更长的序列长度: 相比 GLM-10B(序列长度1024),ChatGLM-6B 序列长度达 2048,支持更长对话和应用;
  • 人类意图对齐训练: 使用了监督微调(Supervised Fine-Tuning)、反馈自助(Feedback Bootstrap)、人类反馈强化学习(Reinforcement Learning from Human Feedback) 等方式,使模型初具理解人类指令意图的能力。输出格式为 markdown,方便展示;因此,ChatGLM-6B 具备了一定条件下较好的对话与问答能力;

3、ChatGLM-6B 也有相当多已知的局限和不足

  • 模型容量较小: 6B 的小容量,决定了其相对较弱的模型记忆和语言能力;在面对许多事实性知识任务时,ChatGLM-6B 可能会生成不正确的信息;
  • 她也不擅长逻辑类问题(如数学、编程)的解答;
  • 可能会产生有害说明或有偏见的内容:ChatGLM-6B 只是一个初步与人类意图对齐的语言模型,可能会生成有害、有偏见的内容;
  • 较弱的多轮对话能力:ChatGLM-6B 的上下文理解能力还不够充分,在面对长答案生成,以及多轮对话的场景时,可能会出现上下文丢失和理解错误的情况;
  • 英文能力不足:训练时使用的指示大部分都是中文的,只有一小部分指示是英文的。因此在使用英文指示时,回复的质量可能不如中文指示的回复,甚至与中文指示下的回复矛盾;
  • 易被误导:ChatGLM-6B 的“自我认知”可能存在问题,很容易被误导并产生错误的言论。例如当前版本模型在被误导的情况下,会在自我认知上发生偏差。即使该模型经过了1万亿标识符(token)左右的双语预训练,并且进行了指令微调和人类反馈强化学习(RLHF),但是因为模型容量较小,所以在某些指示下可能会产生有误导性的内容;


图片

二、系统部署

1、硬件需求

图片

2、系统环境

操作系统:CentOS 7.6/Ubuntu (内存:32G)

显卡配置: 2x NVIDIA Gefore 3070Ti 8G (共16G显存)

Python 3.8.13 (版本不要高于3.10,否则有些依赖无法下载,像paddlepaddle 2.4.2在高版本Python还不支持)

# 安装Python3.8所需依赖
sudo yum -y install gcc zlib zlib-devel openssl-devel
# 下载源码
wget https://www.python.org/ftp/python/3.8.13/Python-3.8.13.tgz
# 解压缩
tar -zxvf Python-3.8.13.tgz
# 编译配置,注意:不要加 --enable-optimizations 参数
./configure --prefix=/usr/local/python3
# 编译并安装
make && make install

3、部署ChatGLM 6B

3.1 下载源码

直接下载chatGLM-6B  https://github.com/THUDM/ChatGLM-6B

git下载  git clone https://github.com/THUDM/ChatGLM-6B

3.2 安装依赖

进入ChatGLM-6B目录

使用 pip 安装依赖:pip install -r requirements.txt,其中 transformers 库版本推荐为 4.27.1,但理论上不低于 4.23.1 即可。

此外,如果需要在 cpu 上运行量化后的模型,还需要安装 gcc 与 openmp。多数 Linux 发行版默认已安装。对于 Windows ,可在安装 TDM-GCC 时勾选 openmp。 Windows 测试环境 gcc 版本为 TDM-GCC 10.3.0, Linux 为 gcc 11.3.0

3.3 下载模型

从 Hugging Face Hub 下载

可以手动下载https://huggingface.co/THUDM/chatglm-6b/tree/main

git下载 git clone https://huggingface.co/THUDM/chatglm-6b

将模型下载到本地之后,将以上代码中的 THUDM/chatglm-6b 替换为你本地的 chatglm-6b 文件夹的路径,即可从本地加载模型;

在chatglm-6b文件下创建一个model文件夹放模型文件

3.4 代码调用

可以通过如下代码调用 ChatGLM-6B 模型来生成对话:

模型的实现仍然处在变动中。如果希望固定使用的模型实现以保证兼容性,可以在 from_pretrained 的调用中增加 revisinotallow="v1.1.0" 参数。

>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
>>> model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
>>> model = model.eval()
>>> response, history = model.chat(tokenizer, "你好", history=[])
>>> print(response)
你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。
>>> response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)
>>> print(response)

晚上睡不着可能会让你感到焦虑或不舒服,但以下是一些可以帮助你入睡的方法:

1. 制定规律的睡眠时间表:保持规律的睡眠时间表可以帮助你建立健康的睡眠习惯,使你更容易入睡。尽量在每天的相同时间上床,并在同一时间起床。

2. 创造一个舒适的睡眠环境:确保睡眠环境舒适,安静,黑暗且温度适宜。可以使用舒适的床上用品,并保持房间通风。

3. 放松身心:在睡前做些放松的活动,例如泡个热水澡,听些轻柔的音乐,阅读一些有趣的书籍等,有助于缓解紧张和焦虑,使你更容易入睡。

4. 避免饮用含有咖啡因的饮料:咖啡因是一种刺激性物质,会影响你的睡眠质量。尽量避免在睡前饮用含有咖啡因的饮料,例如咖啡,茶和可乐。

5. 避免在床上做与睡眠无关的事情:在床上做些与睡眠无关的事情,例如看电影,玩游戏或工作等,可能会干扰你的睡眠。

6. 尝试呼吸技巧:深呼吸是一种放松技巧,可以帮助你缓解紧张和焦虑,使你更容易入睡。试着慢慢吸气,保持几秒钟,然后缓慢呼气。

如果这些方法无法帮助你入睡,你可以考虑咨询医生或睡眠专家,寻求进一步的建议。

3.5 低成本部署

模型量化

默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型,使用方法如下:

# 按需修改,目前只支持 4/8 bit 量化

model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).quantize(8).half().cuda()

进行 2 至 3 轮对话后,8-bit 量化下 GPU 显存占用约为 10GB,4-bit 量化下仅需 6GB 占用。随着对话轮数的增多,对应消耗显存也随之增长,由于采用了相对位置编码,理论上 ChatGLM-6B 支持无限长的 context-length,但总长度超过 2048(训练长度)后性能会逐渐下降。

模型量化会带来一定的性能损失,经过测试,ChatGLM-6B 在 4-bit 量化下仍然能够进行自然流畅的生成。使用 GPT-Q 等量化方案可以进一步压缩量化精度/提升相同量化精度下的模型性能,欢迎大家提出对应的 Pull Request。

量化过程需要在内存中首先加载 FP16 格式的模型,消耗大概 13GB 的内存。如果你的内存不足的话,可以直接加载量化后的模型,INT4 量化后的模型仅需大概 5.2GB 的内存:

# INT8 量化的模型将"THUDM/chatglm-6b-int4"改为"THUDM/chatglm-6b-int8"

model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).half().cuda()

量化模型的参数文件也可以从这里手动下载。

3.6 CPU 部署

如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)

model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()

如果你的内存不足,可以直接加载量化后的模型:

# INT8 量化的模型将"THUDM/chatglm-6b-int4"改为"THUDM/chatglm-6b-int8"

model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4",trust_remote_code=True).float()

如果遇到了报错 Could not find module 'nvcuda.dll' 或者 RuntimeError: Unknown platform: darwin (MacOS) ,请从本地加载模型

3.7 多卡部署

如果你有多张 GPU,但是每张 GPU 的显存大小都不足以容纳完整的模型,那么可以将模型切分在多张GPU上。首先安装 accelerate: pip install accelerate,然后通过如下方法加载模型:

from utils import load_model_on_gpus

model = load_model_on_gpus("THUDM/chatglm-6b", num_gpus=2)

即可将模型部署到两张 GPU 上进行推理。你可以将 num_gpus 改为你希望使用的 GPU 数。默认是均匀切分的,你也可以传入 device_map 参数来自己指定。

四、系统启动

4.1 网页版 Demo

首先安装 Gradio:pip install gradio,然后运行仓库中的 web_demo.py:

python web_demo.py

图片

图片

程序会运行一个 Web Server,并输出地址。在浏览器中打开输出的地址即可使用。最新版 Demo 实现了打字机效果,速度体验大大提升。注意,由于国内 Gradio 的网络访问较为缓慢,启用 demo.queue().launch(share=True, inbrowser=True) 时所有网络会经过 Gradio 服务器转发,导致打字机体验大幅下降,现在默认启动方式已经改为 share=False,如有需要公网访问的需求,可以重新修改为 share=True 启动

4.2 命令行 Demo

运行仓库中 cli_demo.py:

python cli_demo.py

图片

程序会在命令行中进行交互式的对话,在命令行中输入指示并回车即可生成回复,输入 clear 可以清空对话历史,输入 stop 终止程序

4.3 API部署

首先需要安装额外的依赖 pip install fastapi uvicorn,然后运行仓库中的 api.py:

python api.py

默认部署在本地的 8000 端口,通过 POST 方法进行调用。

curl -X POST "http://127.0.0.1:8000" \
     -H 'Content-Type: application/json' \
     -d '{"prompt": "你好", "history": []}'
得到的返回值为
{
  "response":"你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。",
  "history":[["你好","你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。"]],
  "status":200,
  "time":"2023-03-23 21:38:40"
}

4.4 部署中常见问题

问题1、torch.cuda.OutOfMemoryError: CUDA out of memory

很明显,显存不足,建议切换到chatglm-6b-int4或者chatglm-6b-int4

torch.cuda.OutOfMemoryError: CUDA out of memory

问题2、"RuntimeError: Library cudart is not initialized"

这个错误通常是由于缺少或损坏的 CUDA 库文件引起的。要解决这个问题,需要安装 CUDA Toolkit :

安装CUDA Toolkit
sudo yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo
sudo yum clean all
sudo yum -y install nvidia-driver-latest-dkms
sudo yum -y install cuda


责任编辑:武晓燕 来源: Android开发编程
相关推荐

2023-08-09 17:35:11

开源模型

2022-05-20 11:23:01

火山引擎A/B 测试ToB 市场

2023-10-28 09:08:19

微服务saas私有化

2013-03-26 09:40:58

戴尔私有化收购

2013-04-22 17:14:12

2024-07-31 09:34:59

2020-05-25 16:00:24

工具代码开发

2010-06-08 10:53:54

戴尔

2015-10-10 11:08:38

360周鸿祎私有化

2024-01-07 13:17:06

Helm云原生微服务

2013-09-17 09:53:15

戴尔CEO私有化企业业务

2010-11-10 10:52:59

戴尔退市

2021-06-02 00:22:04

ClouderaHadoop私有化

2021-09-16 18:44:05

京东云PaaS平台Android

2013-09-16 10:21:44

戴尔私有化PC

2010-06-10 08:49:22

Java

2012-03-22 17:07:03

阿里巴巴私有化

2010-06-04 10:33:16

戴尔公司私有化

2023-12-26 16:33:57

k8s私有化云服务
点赞
收藏

51CTO技术栈公众号