Redis布隆过滤器的原理和应用场景,解决缓存穿透

数据库 Redis
布隆过滤器BloomFilter是一种专门用来解决去重问题的高级数据结果。

今天分享一下Redis布隆过滤器的原理和应用场景,解决缓存穿透,实现快速入门,丰富个人简历,提高面试level,给自己增加一点谈资,秒变面试小达人,BAT不是梦。

一、布隆过滤器BloomFilter是什么

布隆过滤器BloomFilter是一种专门用来解决去重问题的高级数据结果。

实质就是一个大型位数组和几个不同的无偏hash函数,无偏表示分布均匀。由一个初值为零的bit数组和多个哈希函数组成,用来判断某个数据是否存在,它和HyperLogLog一样,不是那么的精准,存在一定的误判概率。

二、布隆过滤器BloomFilter能干嘛?

图片

高效地插入和查询,占用空间少,返回的结果是不确定的,一个元素如果判断结果为存在,它不一定存在;不存在时,一定不存在。

因为不同的字符串的hashcode可能相同,布隆过滤器BloomFilter是根据hashcode判断的,如果某个hashcode存在,它对应的字符串不一定是你想要的那个字符串;但是,hashcode不存在时,你所要的字符串,肯定不存在,细品~

布隆过滤器BloomFilter只能添加元素,不能删除元素。

这和上面提到的hashcode判定原理是一样的,相同hashcode的字符串会存储在一个index,删除时,是将某个index移除,此时,就可能移除拥有相同hashcode的不同字符串,细品~

三、布隆过滤器使用场景

1、解决缓存穿透问题

一般情况下,先查询Redis缓存,如果Redis中没有,再查询MySQL。当数据库中也不存在这条数据时,每次查询都要访问数据库,这就是缓存穿透。

在Redis前面添加一层布隆过滤器,请求先在布隆过滤器中判断,如果布隆过滤器不存在时,直接返回,不再反问Redis和MySQL。

如果布隆过滤器中存在时,再访问Redis,再访问数据库。

完美解决缓存穿透问题。

图片

2、黑名单

如果黑名单非常大,上千万了,存放起来很耗费空间,在布隆过滤器中实现黑名单功能,是一个很好的选择。

3、网页爬虫对URL的去重,避免爬取相同的URL地址

四、操作布隆过滤器BloomFilter

1、使用布隆过滤器

(1)初始化bitmap

布隆过滤器 本质上 是由长度为 m 的位向量或位列表(仅包含 0 或 1 位值的列表)组成,最初所有的值均设置为 0。

图片

(2)添加key

使用多个hash函数对key进行hash运算,得到一个整数索引值,对位数组长度进行取模运算得到一个位置,每个hash函数都会得到一个不同的位置,将这几个位置的值置为1就表示添加成功。

例如,我们添加一个字符串“哪吒编程”,对字符串进行多次hash(key) → 取模运行→ 得到坑位。

图片

2、删除key

只要有其中一位是零就表示这个key不存在,但如果都是1,则不一定存在对应的key。

3、判断是否存在

向布隆过滤器查询某个key是否存在时,先把这个 key 通过相同的多个 hash 函数进行运算,查看对应的位置是否都为 1,

只要有一个位为零,那么说明布隆过滤器中这个 key 不存在;

如果这几个位置全都是 1,那么说明极有可能存在;

因为这些位置的 1 可能是因为其他的 key 存在导致的,也就是前面说过的hash冲突

五、代码实例

1、使用Redis做缓存

public class StudentSerivce {
    public static final String CACHE_KEY = "student:";

    @Resource
    private StudentMapper studentMapper;
    @Resource
    private RedisTemplate redisTemplate;

    public void addstudent(Student student){
        int i = studentMapper.insertStudent(student);

        if(i > 0)
        {
            //到数据库里面,重新捞出新数据出来,做缓存
            student=studentMapper.selectByKey(student.getId());
            //缓存key
            String key=CACHE_KEY+student.getId();
            //往mysql里面插入成功随后再从mysql查询出来,再插入redis
            redisTemplate.opsForValue().set(key,student);
        }
    }

    public Student findstudentById(Integer studentId){
        Student student = null;
        String key=CACHE_KEY+studentId;
        // 查询redis
        student = (Student) redisTemplate.opsForValue().get(key);
        // redis没有,查询mysql
        if(student==null){
            // 从mysql查出来student
            student=studentMapper.selectByPrimaryKey(studentId);
            // mysql有,redis没有
            if (student != null) {
                // mysql的数据写入redis
                redisTemplate.opsForValue().set(key,student);
            }
        }
        return student;
    }
}

2、布隆过滤器

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

/**
 * 布隆过滤器 -> redis -> mysql
 * @autor 哪吒编程
 * @date 2023-04-17
 */
@Service
public class StudentServiceImpl implements StudentService {
    public static final String CACHE_KEY = "student:";

    @Autowired
    private StudentMapper studentMapper;

    @Autowired
    private RedisTemplate redisTemplate;

    public void addstudent(student student){
        int i = studentMapper.insertSelective(student);

        if(i > 0) {
            //到数据库里面,重新捞出新数据出来,做缓存
            student=studentMapper.selectByPrimaryKey(student.getId());
            //缓存key
            String key=CACHE_KEY+student.getId();
            //往mysql里面插入成功随后再从mysql查询出来,再插入redis
            redisTemplate.opsForValue().set(key,student);
        }
    }

    public student findstudentById(Integer studentId){
        student student = null;

        //缓存key的名称
        String key=CACHE_KEY+studentId;

        // 查询redis
        student = (student) redisTemplate.opsForValue().get(key);

        //redis没有,查询mysql
        if(student==null) {
            student=studentMapper.selectByPrimaryKey(studentId);
            // mysql有,redis没有
            if (student != null) {
                // 把mysql捞到的数据写入redis
                redisTemplate.opsForValue().set(key,student);
            }
        }
        return student;
    }

    /**
     * BloomFilter -> redis -> mysql
     * 白名单:whites
     */
    public student findStudentByIdWithBloomFilter (Integer studentId) {
        student student = null;

        String key = CACHE_KEY + studentId;

        //布隆过滤器校验,无是绝对无,有是可能有
        if(!checkWithBloomFilter("whites",key)) {
            log.info("白名单无此顾客信息:{}",key);
            return null;
        }

        //查询redis
        student = (Student) redisTemplate.opsForValue().get(key);
        //redis没有,查询mysql
        if (student == null) {
            student = studentMapper.selectByPrimaryKey(studentId);
            // mysql有,redis没有
            if (student != null) {
                // 把mysql捞到的数据写入redis
                redisTemplate.opsForValue().set(key, student);
            }
        }
        return student;
    }

    /**
     * 查询布隆过滤器中是否存在
     */
    public boolean checkWithBloomFilter(String checkItem,String key) {
        int hashValue = Math.abs(key.hashCode());
        long index = (long) (hashValue % Math.pow(2, 32));
        return redisTemplate.opsForValue().getBit(checkItem, index);
    }
}

六、总结

  1. 有,是可能有;无,是肯定无。
  2. 使用时z,初始化值尽可能满足实际元素长度,避免扩容。
  3. 当实际元素数量超过初始长度时,应该对布隆过滤器进行重建,再将所有的历史元素批量添加进去。

本文转载自微信公众号「哪吒编程」,可以通过以下二维码关注。转载本文请联系哪吒编程公众号。

责任编辑:姜华 来源: 哪吒编程
相关推荐

2020-10-29 07:16:26

布隆过滤器场景

2024-01-05 09:04:35

隆过滤器数据结构哈希函数

2024-11-04 08:45:48

布隆过滤器元数据指纹值

2019-03-22 15:15:25

Redis缓存击穿雪崩效应

2022-03-21 08:31:07

布隆过滤器Redis过滤器原理

2023-10-30 10:40:29

检查用户app注册数据库

2024-03-15 11:21:22

布隆过滤器数据库数据

2024-03-04 10:24:34

布隆过滤器C#代码

2024-09-18 10:08:37

2021-03-06 14:41:07

布隆过滤器算法

2023-01-31 08:19:53

二进制元素数量

2021-09-03 06:33:24

布隆过滤器高并发

2025-01-22 00:00:00

布隆过滤器二进制

2021-01-11 08:34:16

缓存穿透QPS

2024-09-25 17:44:08

2024-10-09 15:54:38

布隆过滤器函数

2023-07-06 10:15:38

布隆过滤器优化

2020-09-09 08:23:53

URLIP代码

2009-06-18 10:13:00

Hibernate过滤

2020-08-28 13:02:17

布隆过滤器算法
点赞
收藏

51CTO技术栈公众号