小扎亲自官宣Meta视觉大模型!自监督学习无需微调,多任务效果超OpenCLIP

人工智能 新闻
目前Meta官方不仅已经放出了开源代码,而且还给了网页版Demo试玩。

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

无需文字标签,完全自监督的Meta视觉大模型来了!

小扎亲自官宣,发布即收获大量关注度——

在语义分割、实例分割、深度估计和图像检索等任务中,这个名叫DINOv2的视觉大模型均取得了非常不错的效果。

图片

甚至有超过当前最好的开源视觉模型OpenCLIP之势。

虽然此前Meta就发布过自监督学习视觉大模型DINO,不过这次AI识别图像特征的能力显然更进一步,准确分割出了视频中的主体:

图片

可别以为DINOv2通过自监督学会的只有图片分割。事实上,它已经能根据不同类别、不同场景下的照片,准确识别出同种物体(狗)的头部、身体和四肢长在哪:

图片

换而言之,DINOv2自己学会了找图像特征。

目前Meta官方不仅已经放出了开源代码,而且还给了网页版Demo试玩。有网友内涵:

什么叫开源,LLaMA,SAM,DINOv2这才叫开源!

一起来看看,DINOv2的效果究竟如何。

准确识别不同画风的同种物体

事实上,DINOv2是基于上一代DINOv1打造的视觉大模型。

这个模型参数量是10亿级,也仍然是视觉Transformer架构(ViT),但与DINO不太一样的是,这次DINOv2在数据集上经过了精心挑选。

具体来说,DINOv2构建了一个数据筛选pipeline,将内容相似的图片精心筛选出来,同时排除掉相同的图片:

图片

最终呈现给DINOv2的训练数据图片虽然没有文字标签,但这些图片的特征确实是相似的。

采用这类数据训练出来的视觉模型,效果如何?

这是DINOv2在8个视觉任务上的表现,包括语义分割、分类、深度估计等,其中橙色是自监督方法的效果,深粉色是弱监督方法的效果。

可以看见,经过自监督学习的视觉模型,表现上已经与经过弱监督学习的模型性能相当。

图片

实际效果也不错,即便在一系列照片中,相同物体的画风并不相似,DINOv2也能准确识别它们的特征,并分到相似的列表中。

如(a)组中都具有翅膀的鸟和飞机、(b)组中的大象和大象雕塑、(c)组中的汽车和汽车玩具模型、(d)组中的马和涂鸦版马:

图片

而且从PCA(主成分分析)图像效果来看,DINOv2不仅能准确分类,还能用不同颜色标出它们“相同”的部分,例如象鼻都是绿色、车轮都是红色、马的尾巴是黄色等。

换而言之,DINOv2能理解这些图像中的相似之处,就像人会形容飞机“看起来像一只鸟”一样。

目前DINOv2已经放出Demo,我们也试了试它的实际效果。

Demo直接可玩

官网已经开放语义分割、图像检索和深度估计三大功能的试玩。

据Meta介绍,这几个任务中,DINOv2在大多数基准上超过了目前开源视觉模型中表现最好的OpenCLIP。

我们先来看看深度估计的效果。

图片

值得一提的是,在效果更好的情况下,DINOv2运行的速度也比iBOT更快,相同硬件下只需三分之一的内存,运行速度就能比DINOv2快上2倍多。

图片

这是Meta论文中与OpenCLIP在实际例子上的比较效果:

图片

我们用这张猛男版新宝岛试一下,看起来还不错,即使是高糊图片也能比较好地估计出深度:

图片

接下来是语义分割的效果,这里也先给出Meta论文中的数据对比情况:

图片

这里也给出OpenCLIP和DINOv2的对比,中间的图片是OpenCLIP的效果,右边是DINOv2分割的效果:

图片

我们也用一张办公室的图片试了一下,看起来DINOv2还是能比较准确地分割人体、物体的,但在细节上会有一些噪点:

图片

最后是图片检索

官网上给出的图片效果还是挺不错的,输入铁塔照片,可以生成不少含铁塔的相似艺术图片:

图片

这里我们也试了试,输入一张华强买瓜,给出来的艺术图片大多数与西瓜有关:

图片

那么,这样的自监督视觉大模型可以用在哪里?

从Meta给出的视频来看,目前有一些比较环保的用途,例如用于估计全球各地的树木高度:

图片

除此之外,如同扎克伯格所说,DINOv2还能被用于改善医学成像、粮食作物生长等。当然这里小扎还进一步强调:

可以被用于制作更具沉浸感的元宇宙。

嗯,看来Meta的元宇宙路线还将继续……

试玩Demo地址:https://dinov2.metademolab.com/demos

项目地址:​https://github.com/facebookresearch/dinov2​

责任编辑:张燕妮 来源: 量子位
相关推荐

2021-05-12 15:22:07

机器学习人工智能计算机

2022-08-17 15:41:08

AI机器学习

2021-03-05 12:58:31

AISEER模型

2021-11-08 22:42:51

机器学习监督学习数据

2024-06-13 11:44:43

2024-07-30 11:20:00

图像视觉

2024-05-24 15:53:20

视觉图像

2023-11-23 15:54:01

人工智能监督学习无监督学习

2022-09-28 15:34:06

机器学习语音识别Pytorch

2023-11-10 09:31:29

自动驾驶训练

2024-09-19 13:40:00

2022-05-17 16:38:40

数据训练

2023-04-03 10:32:56

模型数据集

2020-04-28 17:26:04

监督学习无监督学习机器学习

2023-02-14 15:11:19

工具模型

2023-12-01 16:27:05

机器学习无监督学习

2023-02-28 14:57:02

MetaAI

2017-06-12 14:04:45

深度学习人工智能

2022-11-23 13:36:38

模型研究

2021-06-29 09:25:30

Office微软应用程序
点赞
收藏

51CTO技术栈公众号