ChatGPT大火带动AI又一波热潮,不过业界普遍认为,当AI 步入大模型时代,只有大企业和超级富有的企业才玩得起AI,因为AI大模型的打造非常昂贵。
首先是计算昂贵。多伦多大学市场营销教授Avi Goldfarb说:“如果你想创办一家企业,自己开发大语言模型,自己计算,成本太高了。OpenAI是很贵的,要数以十亿计的美元。”租赁计算当然会便宜不少,但企业仍然要向AWS等企业支付昂贵费用。
其次是数据昂贵。训练模型需要海量数据,有时数据是现成的,有时不是。Common Crawl和LAION等数据可以免费使用,对于此类数据,成本主要来自数据清理和处理,成本变化很大,可能是几百美元,也可能是几百万美元。
Glean公司创始工程师Debarghya Das说,在美国,根据大语言模型论文做一些粗略的数学计算,如果用的是Facebook LLaMA,训练成本(不考虑迭代或者出错)大约是400万美元,如果是谷歌PaLM,大约2700万美元。
即使用的是免费数据,成本也不低。Hugging Face公司研究人员Sasha Luccioni说:“当你下载容量达到TB的数据,如果想过滤或者以某种特殊方式利用数据,比如用文本-图片模型处理(研究人会专注于某些数据子集,这样模型才会变得更好),整个过程相当棘手。”需要强大的计算力,需要大量专业人士。
再次,专业人才的聘请费用也很高。Debarghya Das在做上述估算成本时没有考虑人力成本。Sasha Luccioni指出:“机器学习专业人士的薪酬很高,因为要与谷歌及其它科技巨头争夺人才,有时一位专业人才可能要几百万美元。”2016年OpenAI最顶级的研究人员薪酬约为190万美元。
并且,训练模型、聘请专业人士的成本不是一次性的,是持续的。例如,如果开发的是客服聊天机器人,每周或者每几周就要优化。模型还要经受压力测试,确保它生成的答案不出错。正如Sasha Luccioni所解释:“最贵的成本来自持续性工作,必须持续测试模型,必须确保AI所做的和预期一样。”
最后,持续运转费用也不低。当一切准备妥当,模型向公众开放,每天要接受成千上万次询问,此时要确保模型可扩展、高度稳定,维护成本也很高,且需要专业人士来处理。