哈喽,大家好。
之前给大家分享过摔倒识别、打架识别,今天以摔倒识别为例,我们看看能不能完全交给ChatGPT来做。
让ChatGPT来做这件事,最核心的是如何向ChatGPT提问,把问题一股脑的直接丢给ChatGPT,如:用 Python 写个摔倒检测代码 是不可取的, 而是要像挤牙膏一样,一点一点引导ChatGPT得到准确的答案,从而才能真正让ChatGPT提高我们解决问题的效率。
今天分享的摔倒识别案例,与ChatGPT对话的思路清晰,代码可用度高,按照GPT返回的结果完全可以开发一个摔倒识别的项目了,并且还有一些延伸的话题,如:毕设的改进点。
下面开始正式的分享。
1. 角色设定
向ChatGPT提问首先要给他一个角色设定,在算法领域这叫prompt,有了进入了角色,才能更好地回答问题。所以,我提问的第一句是:
假如你是一名AI工程师,我想识别视频中是否有摔倒行为,有哪些办法
没必要刚上来就让他直接写代码,先问问他有哪些办法或者思路。
我们看看ChatGPT的回答
给出了3个方案,有传统的图像方法,也有深度学习方法。
2. 思路引导
我们当然是对深度学习感兴趣了,所以继续询问关于深度学习的方法
使用深度学习的方法有哪些
ChatGPT回答
从卷积神经网络到卷积循环神经网络说了个遍。
看起来循环神经网络 RNN更简单、靠谱,接下来我的提问是
我需要 循环神经网络 (RNN) 的方法
ChatGPT回答
给出了非常详细的、实操性非常强的步骤,我简单归类一下,大致是两步:
第一步,对视频预处理,用卷积神经网络(如:ResNet)提取视频动作特征(类似 wordembedding) 第二步,用动作特征作为 lstm 模型的输入,训练 lstm 循环神经网络,对动作特征分类,从而识别出摔倒行为
3. 写代码
到目前,ChatGPT 提供给我们的,解决问题的思路非常清晰,并且可执行性非常强。
所以,这时候我们可以让ChatGPT写代码了。
按照我上面划分的步骤,我让他一次性把第一步代码写出来,所以,我的提问是:
写一下视频预处理的代码,并用 pytorch resnet提取视频特征
ChatGPT的回答
好的,下面是通过 Pytorch 的 ResNet 提取视频特征的代码,以及视频预处理的示例代码:
视频预处理:
import cv2
import numpy as np
def preprocess_video(video_path, n_frames=16, resize=(224, 224)):
# 读取视频
cap = cv2.VideoCapture(video_path)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
# 强制转换为 RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# 图像缩放
frame = cv2.resize(frame, resize)
# 图像增强等操作
# ...
frames.append(frame)
cap.release()
# 取固定帧数 n_frames,超过后从中间开始截取
n_frames = min(len(frames), n_frames)
start = (len(frames) - n_frames) // 2
end = start + n_frames
# 截取帧数后堆叠成四维数组
frames = np.stack(frames[start:end], axis=0)
# 转换为支持 Pytorch 模型的格式 (B, C, T, H, W)
frames = np.transpose(frames, (0, 3, 1, 2))
return frames
提取视频特征:
import torch
import torchvision.models as models
def extract_features(frames):
# 加载 ResNet 模型
resnet = models.resnet50(pretrained=True)
# 去掉最后的全连接层
resnet = torch.nn.Sequential(*list(resnet.children())[:-1])
# 将 ResNet 设置为评估模式
resnet.eval()
# 将预处理后的视频序列转化为 Tensor,并调整为指定的数据类型和范围
frames = torch.from_numpy(frames).float() / 255.0
# 减去 ImageNet 数据集的均值和标准差
normalize = torch.nn.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
frames = normalize(frames)
# 前向预测,输出 2048 维特征向量
with torch.no_grad():
features = resnet(frames)
return features.reshape(-1, 2048)
在上面这两块代码中,preprocess_video() 函数将读取视频,并将其转换为指定大小的图像帧,返回处理后的数据;extract_features() 函数将接受上一步处理后的数据,并将其转化为 Pytorch 的 Tensor,使用训练好的 ResNet 模型对每一帧图像进行特征提取,并返回一个形状为 (B, 2048) 的 Tensor,其中 B 为帧数。
图片太长了,为了大家能更好的感受ChatGPT的回答,我直接把代码文本贴出来了。
定义了两个独立函数,分别完成了第一步中的两小步内容。
代码没有问题,先调用preprocess_video函数对视频预处理,再调用 extract_features卷积操作,就可以将一个向量embedding成一个2048维的向量。
第二步,我拆分成了两小步,先搭建lstm模型,再训练
基于上面产出的结果,用 pytorch lstm搭建视频分类模型
ChatGPT的回答
写一下模型训练的代码
ChatGPT的回答
好的,下面是使用 Pytorch 训练视频分类模型的代码:
import torch
import torch.nn as nn
import torch.optim as optim
# 训练函数
def train(model, criterion, optimizer, dataloader, num_epochs=10):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device) # 将模型移动到 GPU 或 CPU 上
for epoch in range(num_epochs):
running_loss = 0.0
correct_predictions = 0
total_predictions = 0
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(True):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
correct_predictions += torch.sum(preds == labels.data)
total_predictions += labels.size(0)
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = correct_predictions.double() / total_predictions
print("Epoch {}: Loss {:.4f} Acc: {:.4f}".format(epoch + 1, epoch_loss, epoch_acc))
# 定义超参数
BATCH_SIZE = 4
NUM_EPOCHS = 20
# 定义数据集,假设已经准备好了训练数据集和测试数据集
train_dataset = ...
test_dataset = ...
# 定义数据加载器
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=BATCH_SIZE, shuffle=True
)
test_dataloader = torch.utils.data.DataLoader(
test_dataset, batch_size=BATCH_SIZE, shuffle=False
)
# 定义模型
input_size = 2048
hidden_size = 512
num_layers = 1
num_classes = 2
model = VideoLSTM(input_size, hidden_size, num_layers, num_classes)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters())
# 训练模型
train(model, criterion, optimizer, train_dataloader, num_epochs=NUM_EPOCHS)
在代码中,首先定义了模型的超参数,如 BATCH_SIZE 和 NUM_EPOCHS。接着定义了训练数据集和测试数据集,并使用 Pytorch 的 DataLoader 将数据加载为 batch。然后定义了模型、损失函数和优化器。最后调用 train() 函数进行模型训练。
在训练过程中,每个 epoch 循环训练所有的视频帧,计算损失函数,计算准确率,并输出当前 epoch 的平均损失和准确率。训练完成后,可以将模型的参数保存到磁盘上,以便以后使用。
代码的可用性非常高。除了代码串联有一些成本,各个独立模块基本不需要动,开发效率非常高效。
还可以让ChatGPT找一些数据集
还可以让他写一下模型推理的代码
他可以自动帮我们把视频预处理、特征提取和推理三部分都串起来,形成一个完整的项目。
4. 扩展
到这里,我们就完全用ChatGPT把项目做完了。
我们还可以聊一些扩展性的话题,如:
还可以让ChatGPT帮我们想一些能突出学术价值的点
看到这里,说明我的文章对你多少有一丢丢的帮助。不管是否加入星球,我都感谢对大家对我的认可和信任。