importcv2importnumpyasnpfrommatplotlibimportpyplotaspltimg=cv2.imread('sample.png',0) # Using 0 to read image in grayscale modeplt.imshow(img, cmap='gray') #cmap is used to specify imshow that the image is in greyscaleplt.xticks([]), plt.yticks([]) # remove tick marksplt.show()
f=np.fft.fft2(img) #the image 'img' is passed to np.fft.fft2() to compute its 2D Discrete Fourier transform fmag=20*np.log(np.abs(f))
plt.imshow(mag, cmap='gray') #cmap='gray' parameter to indicate that the image should be displayed in grayscale.plt.title('Magnitude Spectrum')
plt.xticks([]), plt.yticks([])
plt.show()
fig, ax=plt.subplots(2, 2) # create a 2x2 grid of subplotsfig.suptitle('Filters') # set the title for the entire figure# plot the first image in the top-left subplotim1=ax[0, 0].imshow(np.abs(idealFilterLP(50, img.shape)), cmap='gray')
ax[0, 0].set_title('Low Pass Filter of Diameter 50 px')
ax[0, 0].set_xticks([])
ax[0, 0].set_yticks([])
# plot the second image in the top-right subplotim2=ax[0, 1].imshow(np.abs(idealFilterHP(50, img.shape)), cmap='gray')
ax[0, 1].set_title('High Pass Filter of Diameter 50 px')
ax[0, 1].set_xticks([])
ax[0, 1].set_yticks([])
# plot the third image in the bottom-left subplotim3=ax[1, 0].imshow(np.abs(gaussianLP(50 ,img.shape)), cmap='gray')
ax[1, 0].set_title('Gaussian Filter of Diameter 50 px')
ax[1, 0].set_xticks([])
ax[1, 0].set_yticks([])
# plot the fourth image in the bottom-right subplotim4=ax[1, 1].imshow(np.abs(gaussianHP(50 ,img.shape)), cmap='gray')
ax[1, 1].set_title('Gaussian Filter of Diameter 50 px')
ax[1, 1].set_xticks([])
ax[1, 1].set_yticks([])
# adjust the spacing between subplotsfig.subplots_adjust(wspace=0.5, hspace=0.5)
# save the figure to a filefig.savefig('filters.png', bbox_inches='tight')
defFreq_Trans(image, filter_used):
img_in_freq_domain=np.fft.fft2(image)
# Shift the zero-frequency component to the center of the frequency spectrumcentered=np.fft.fftshift(img_in_freq_domain)
# Multiply the filter with the centered spectrumfiltered_image_in_freq_domain=centered*filter_used# Shift the zero-frequency component back to the top-left corner of the frequency spectruminverse_fftshift_on_filtered_image=np.fft.ifftshift(filtered_image_in_freq_domain)
# Apply the inverse Fourier transform to obtain the final filtered imagefinal_filtered_image=np.fft.ifft2(inverse_fftshift_on_filtered_image)
returnimg_in_freq_domain,centered,filter_used,filtered_image_in_freq_domain,inverse_fftshift_on_filtered_image,final_filtered_image