10行代码搞定图Transformer,图神经网络框架DGL迎来1.0版本

人工智能 新闻
让所有人都能快速使用图机器学习。

2019 年,纽约大学、亚马逊云科技联手推出图神经网络框架 DGL (Deep Graph Library)。如今 DGL 1.0 正式发布!DGL 1.0 总结了过去三年学术界或工业界对图深度学习和图神经网络(GNN)技术的各类需求。从最先进模型的学术研究到将 GNN 扩展到工业级应用,DGL 1.0 为所有用户提供全面且易用的解决方案,以更好的利用图机器学习的优势。


图片

DGL 1.0 为不同场景提供的解决方案。

DGL 1.0 采用分层和模块化的设计,以满足各种用户需求。本次发布的关键特性包括:

  • 100 多个开箱即用的 GNN 模型示例,15 多个在 Open Graph Benchmark(OGB)上排名靠前的基准模型;
  • 150 多个 GNN 常用模块,包括 GNN 层、数据集、图数据转换模块、图采样器等,可用于构建新的模型架构或基于 GNN 的解决方案;
  • 灵活高效的消息传递和稀疏矩阵抽象,用于开发新的 GNN 模块;
  • 多 GPU 和分布式训练能力,支持在百亿规模的图上进行训练。


图片

DGL 1.0 技术栈图

图片


地址:https://github.com/dmlc/dgl

此版本的亮点之一是引入了 DGL-Sparse,这是一个全新的编程接口,使用了稀疏矩阵作为核心的编程抽象。DGL-Sparse 不仅可以简化现有的 GNN 模型(例如图卷积网络)的开发,而且还适用于最新的模型,包括基于扩散的 GNN,超图神经网络和图 Transformer。

DGL 1.0 版本的发布在外网引起了热烈反响,深度学习三巨头之一 Yann Lecun、新加坡国立大学副教授 Xavier Bresson 等学者都点赞并转发。

图片

图片

在接下来的文章中,作者概述了两种主流的 GNN 范式,即消息传递视图和矩阵视图。这些范式可以帮助研究人员更好地理解 GNN 的内部工作机制,而矩阵视角也是 DGL Sparse 开发的动机之一。

消息传递视图和矩阵视图

电影《降临》中有这么一句话:「你所使用的语言决定了你的思维方式,并影响了你对事物的看法。」这句话也适合 GNN。

表示图神经网络有两种不同的范式。第一种称为消息传递视图,从细粒度、局部的角度表达 GNN 模型,详细描述如何沿边交换消息以及节点状态如何进行相应的更新。第二种是矩阵视角,由于图与稀疏邻接矩阵具有代数等价性,许多研究人员选择从粗粒度、全局的角度来表达 GNN 模型,强调涉及稀疏邻接矩阵和特征向量的操作。

图片

消息传递视角揭示了 GNN 与 Weisfeiler Lehman (WL)图同构测试之间的联系,后者也依赖于从邻居聚合信息。而矩阵视角则从代数角度来理解 GNN,引发了一些有趣的发现,比如过度平滑问题。

总之,这两种视角都是研究 GNN 不可或缺的工具,它们互相补充,帮助研究人员更好地理解和描述 GNN 模型的本质和特性。正是基于这个原因,DGL 1.0 发布的主要动机之一就是在已有的消息传递接口基础之上,增加对于矩阵视角的支持。

DGL Sparse:为图机器学习设计的稀疏矩阵库

DGL 1.0 版本中新增了一个名为 DGL Sparse 的库(dgl.sparse),它和 DGL 中的消息传递接口一起,完善了对于全类型的图神经网络模型的支持。DGL Sparse 提供专门用于 图机器学习的稀疏矩阵类和操作,使得在矩阵视角下编写 GNN 变得更加容易。在下一节中,作者演示多个 GNN 示例,展示它们在 DGL Sparse 中的数学公式和相应的代码实现。

图卷积网络(Graph Convolutional Network)

GCN 是 GNN 建模的先驱之一。GCN 可以同时用消息传递视图和矩阵视图来表示。下面的代码比较了 DGL 中用这两种方法实现的区别。

图片


图片

使用消息传递 API 实现 GCN


图片

使用 DGL Sparse 实现 GCN

基于图扩散的 GNN

图扩散是沿边传播或平滑节点特征或信号的过程。PageRank 等许多经典图算法都属于这一类。一系列研究表明,将图扩散与神经网络相结合是增强模型预测有效且高效的方法。下面的等式描述了其中比较有代表性的模型 APPNP 的核心计算。它可以直接在 DGL Sparse 中实现。

图片

图片

超图神经网络

超图是图的推广,其中边可以连接任意数量的节点(称为超边)。超图在需要捕获高阶关系的场景中特别有用,例如电子商务平台中的共同购买行为,或引文网络中的共同作者等。超图的典型特征是其稀疏的关联矩阵,因此超图神经网络 (HGNN) 通常使用稀疏矩阵定义。以下是超图卷积网络(Feng et al., 2018)和其代码实现。

图片

图片

图 Transformer

Transformer 模型已经成为自然语言处理中最成功的模型架构。研究人员也开始将 Transformer 扩展到图机器学习。Dwivedi 等人开创性地提出将所有多头注意力限制为图中连接的节点对。通过 DGL Sparse 工具,只需 10 行代码即可轻松实现该模型。

图片

图片

DGL Sparse 的关键特性

相比 scipy.sparse 或 torch.sparse 等稀疏矩阵库,DGL Sparse 的整体设计是为图机器学习服务,其中包括了以下关键特性:

  • 自动稀疏格式选择:DGL Sparse 的设计让用户不必为了选择正确的数据结构存储稀疏矩阵(也称为稀疏格式)而烦恼。用户只需要记住 dgl.sparse.spmatrix 创建稀疏矩阵,而 DGL 在内部则会根据调用的算子来自动选择最优格式;
  • 标量或矢量非零元素:很多 GNN 模型会在边上学习多个权重(如 Graph Transformer 示例中演示的多头注意力向量)。为了适应这种情况,DGL Sparse 允许非零元素具有向量形状,并扩展了常见的稀疏操作,例如稀疏 - 稠密 - 矩阵乘法(SpMM)等。可以参考 Graph Transformer 示例中的 bspmm 操作。

通过利用这些设计特性,与之前使用消息传递接口的矩阵视图模型的实现相比,DGL Sparse 将代码长度平均降低了 2.7 倍。简化的代码还使框架的开销减少 43%。此外DGL Sparse 与 PyTorch 兼容,可以轻松与 PyTorch 生态系统中的各种工具和包集成。

开始使用 DGL 1.0

DGL 1.0 已经在全平台发布,并可以使用 pip 或 conda 轻松安装。除了前面介绍的示例之外,DGL Sparse 的第一个版本还包括 5 个教程和 11 个端到端示例,所有教程都可以在 Google Colab 中直接体验,无需本地安装。

想了解更多关于 DGL 1.0 的新功能,请参阅作者的发布日志。如果您在使用 DGL 的过程中遇到任何问题或者有任何建议和反馈,也可以通过 Discuss 论坛或者 Slack 联系到 DGL 团队。

责任编辑:张燕妮 来源: 机器之心
相关推荐

2019-10-16 15:40:27

开源技术 软件

2019-05-05 09:46:01

Python代码神经网络

2021-09-15 09:15:54

神经网络数据图形

2020-09-09 10:20:48

GraphSAGE神经网络人工智能

2023-05-04 07:39:14

图神经网络GNN

2022-05-20 11:01:06

模型性能框架

2019-12-04 09:59:07

AWSAI亚马逊

2024-12-12 00:29:03

2019-07-25 08:20:37

代码开发神经网络

2022-03-01 07:31:50

MIME网络邮件

2021-01-08 11:23:08

IP核

2017-05-22 14:45:51

大数据神经网络架构

2024-04-30 14:54:10

2022-07-28 09:00:00

深度学习网络类型架构

2020-01-16 09:43:07

人工智能图神经网络深度学习

2023-09-16 13:48:57

AI数据

2020-04-20 13:45:32

神经网络模型代码

2023-09-17 23:09:24

Transforme深度学习

2022-03-02 14:53:34

人工智能神经网络

2022-07-27 09:53:06

神经网络结构
点赞
收藏

51CTO技术栈公众号