1 为什么需要序列化?
网络传输的数据须是二进制数据,但调用方请求的出入参数都是对象:
- • 对象不能直接在网络传输,需提前转成可传输的二进制,且要求可逆,即“序列化”将对象转换成二进制数据
- • 这时,服务提供方就能正确从二进制数据中分割出不同请求,同时根据请求类型和序列化类型,把二进制的消息体逆向还原成请求对象,即“反序列化”将二进制转换为对象
序列化与反序列化
RPC框架为何需要序列化?
回想RPC通信流程:
RPC通信流程图
2 序列化方式
2.1 JDK原生序列化
案例:
- • 序列化具体由ObjectOutputStream完成
- • 反序列化的具体实现是由ObjectInputStream完成
JDK序列化过程:
ObjectOutputStream序列化过程图
序列化过程就是在读取对象数据的时候,不断加入一些特殊分隔符,这些特殊分隔符用于在反序列化过程中截断用。
- • 头部数据,声明序列化协议、序列化版本,用于高低版本向后兼容
- • 对象数据主要包括类名、签名、属性名、属性类型及属性值,当然还有开头结尾等数据,除了属性值属于真正的对象值,其他都是为了反序列化用的元数据
- • 存在对象引用、继承的情况下,就是递归遍历“写对象”逻辑
将对象的类型、属性类型、属性值按固定格式写到二进制字节流中来完成序列化,再按固定格式读出对象的类型、属性类型、属性值,通过这些信息重建一个新的对象,完成反序列化。
2.2 JSON
典型KV方式,没有数据类型,是一种文本型序列化框架。
- • JSON进行序列化的额外空间开销较大
- • JSON没有类型,但像Java这种强类型语言,需通过反射统一解决,性能不太好
所以如果RPC框架选用JSON序列化,服务提供者与服务调用者之间传输的数据量要相对较小。
2.3 Hessian
动态类型、二进制、紧凑的,并且可跨语言移植的一种序列化框架。比JDK、JSON更加紧凑,性能上要比JDK、JSON序列化高效很多,而且生成的字节数更小。
使用代码示例如下:
相对于JDK、JSON,由于Hessian更加高效,生成的字节数更小,有非常好的兼容性和稳定性,所以Hessian更加适合作为RPC框架远程通信的序列化协议。
但Hessian本身也有问题,官方版本对Java里面一些常见对象的类型不支持,比如:
- Linked系列,LinkedHashMap、LinkedHashSet等,但是可以通过扩展CollectionDeserializer类修复
- Locale类,可以通过扩展ContextSerializerFactory类修复
- Byte/Short反序列化的时候变成Integer
2.4 Protobuf
Protobuf 是 Google 公司内部的混合语言数据标准,是一种轻便、高效的结构化数据存储格式,可以用于结构化数据序列化,支持Java、Python、C++、Go等语言。Protobuf使用的时候需要定义IDL(Interface description language),然后使用不同语言的IDL编译器,生成序列化工具类,它的优点是:
- 序列化后体积相比 JSON、Hessian小很多;
- IDL能清晰地描述语义,所以足以帮助并保证应用程序之间的类型不会丢失,无需类似 XML 解析器;
- 序列化反序列化速度很快,不需要通过反射获取类型;
- 消息格式升级和兼容性不错,可以做到向后兼容。
使用代码示例如下:
Protobuf 非常高效,但是对于具有反射和动态能力的语言来说,这样用起来很费劲,这一点就不如Hessian,比如用Java的话,这个预编译过程不是必须的,可以考虑使用Protostuff。
Protostuff不需要依赖IDL文件,可以直接对Java领域对象进行反/序列化操作,在效率上跟Protobuf差不多,生成的二进制格式和Protobuf是完全相同的,可以说是一个Java版本的Protobuf序列化框架。但在使用过程中,我遇到过一些不支持的情况,也同步给你:
- • 不支持null;
- • ProtoStuff不支持单纯的Map、List集合对象,需要包在对象里面。
3 RPC序列化选型
3.1 性能和效率
3.2 空间开销
即序列化之后的二进制数据的体积大小。序列化后的字节数据体积越小,网络传输的数据量就越小,传输数据的速度也就越快,由于RPC是远程调用,那么网络传输的速度将直接关系到请求响应的耗时。
3.3 通用性和兼容性
某类型为集合类的入参服务调用者不能解析了,服务提供方将入参类加一个属性之后服务调用方不能正常调用,升级了RPC版本后发起调用时报序列化异常…
通用性和兼容性的优先级考虑很高,直接关系到服务调用稳定性和可用率。看重这种序列化协议在版本升级后的兼容性,是否支持更多的对象类型,是否跨平台、跨语言,是否有很多人已用过并踩过很多坑,其次考虑性能、效率和空间开销。
3.4 安全性
JDK原生序列化存在漏洞。如果序列化存在安全漏洞,线上服务可能被入侵:
首选Hessian与Protobuf,性能、时间开销、空间开销、通用性、兼容性和安全性上,都满足要求:
- • Hessian使用更方便,在对象的兼容性上更好
- • Protobuf则更加高效,更通用
4 FAQ
4.1 对象构造得太复杂
属性很多,并且存在多层的嵌套,比如A对象关联B对象,B对象又聚合C对象,C对象又关联聚合很多其他对象,对象依赖关系过于复杂。
序列化框架在序列化与反序列化对象时,对象越复杂就越浪费性能,消耗CPU,这会严重影响RPC框架整体的性能。
4.2 对象太庞大
RPC请求经常超时,排查后发现他们的入参对象非常得大,比如为一个大List或者大Map,序列化之后字节长度达到了上兆字节。这种情况同样会严重地浪费性能、CPU,并且序列化一个如此大的对象是很耗费时间的,这肯定会直接影响到请求耗时。
4.3 使用序列化框架不支持的类作为入参类
如Hessian天然不支持LinkHashMap、LinkedHashSet等,而且大多数情况下最好不要使用第三方集合类,如Guava中的集合类,很多开源的序列化框架都是优先支持编程语言原生的对象。因此如果入参是集合类,应尽量选用原生的、最为常用的集合类,如HashMap、ArrayList。
4.4 对象有复杂继承关系
序列化对象时会将对象属性一一序列化,当有继承关系时,会不停寻找父类,遍历属性。就像问题1,对象关系越复杂,越浪费性能。
在RPC框架的使用过程中,尽量构建简单的对象作为入参和返回值对象,避免上述问题。
5 总结
使用RPC框架的过程中,我们构造入参、返回值对象,主要记住以下几点:
- 1. 对象要尽量简单,没有太多的依赖关系,属性不要太多,尽量高内聚;
- 2. 入参对象与返回值对象体积不要太大,更不要传太大的集合;
- 3. 尽量使用简单的、常用的、开发语言原生的对象,尤其是集合类;
- 4. 对象不要有复杂的继承关系,最好不要有父子类的情况。
实际上,虽然RPC框架可以让我们发起远程调用就像调用本地一样,但在RPC框架的传输过程中,入参与返回值的根本作用就是用来传递信息的,为了提高RPC调用整体的性能和稳定性,我们的入参与返回值对象要构造得尽量简单。
6 FAQ
RPC框架在序列化框架的选型上,你认为还需要考虑哪些因素?你还知道哪些优秀的序列化框架,它们又是否适合在RPC调用中使用?
序列化一般用在协议里面的payload里。
Redis使用的RESP,在做序列化时也是会增加很多冗余的字符,但它胜在实现简单、可读性强易于理解。
JSON和XML使用字符串表示所有的数据,对于非字符数据来说,字面量表达会占用很多额外的存储空间,并且会严重受到数值大小和精度的影响。一个32位浮点数 1234.5678 在内存中占用 4 bytes 空间,如果存储为 utf8 ,则需要占用 9 bytes空间,在JS这样使用utf16表达字符串的环境中,需要占用 18 bytes空间。使用正则表达式进行数据解析,在面对非字符数据时显得十分低效,不仅要耗费大量的运算解析数据结构,还要将字面量转换成对应的数据类型。
在面对海量数据时,这种格式本身就能够成为整个系统的IO与计算瓶颈,甚至直接overflow。
常见的序列化协议有:xml json protobuf jdk等 xml和json可读性好,序列化后空间大,性能差,而且json序列化后无类型,需要反射获取对象类型。而protobuf则是可读性差点,序列化后占用空间小,性能好,不需要反序列化获取属性类型等优点。对性能要求高的原则protobuf比较好点
为什么JSON的额外开销大呢?是因为存在大量的换行吗
最明显的就是你说的数据包大,因为字符相对二进制更占空间。
json需要内存去解析能理解,但为什么json序列化还需要磁盘开销啊。json序列化的二进制数据在体量比其他序列化方法小一些吧,可以减少带宽和流量?
说的如果json数据存储在磁盘上,json字节数相对其他数据都偏大。