在领域泛化 (Domain Generalization, DG) 任务中,当领域的分布随环境连续变化时,如何准确地捕捉该变化以及其对模型的影响是非常重要但也极富挑战的问题。为此,来自 Emory 大学的赵亮教授团队,提出了一种基于贝叶斯理论的时间域泛化框架 DRAIN,利用递归网络学习时间维度领域分布的漂移,同时通过动态神经网络以及图生成技术的结合最大化模型的表达能力,实现对未来未知领域上的模型泛化及预测。本工作已入选 ICLR 2023 Oral (Top 5% among accepted papers)。
漂移感知动态神经网络加持,时间域泛化新框架远超领域泛化&适应方法
我们通过提出基于动态神经网络的框架来解决时间域泛化问题,构建了一个贝叶斯框架来对概念漂移进行建模,并将神经网络视为一个动态图来捕捉随时间不断变化的趋势。
责任编辑:张燕妮
来源:
机器之心