监控 Python 内存使用情况和代码执行时间

开发 前端
在开发过程中,我很确定我们大多数人都会想知道这一点,在本文中总结了一些方法来监控 Python 代码的时间和内存使用情况。

我的代码的哪些部分运行时间最长、内存最多?我怎样才能找到需要改进的地方?

在开发过程中,我很确定我们大多数人都会想知道这一点,在本文中总结了一些方法来监控 Python 代码的时间和内存使用情况。

本文将介绍4种方法,前3种方法提供时间信息,第4个方法可以获得内存使用情况。

  • time 模块
  • %%time 魔法命令
  • line_profiler
  • memory_profiler

time 模块

这是计算代码运行所需时间的最简单、最直接(但需要手动开发)的方法。他的逻辑也很简单:记录代码运行之前和之后的时间,计算时间之间的差异。这可以实现如下:

import time

start_time = time.time()
result = 5+2
end_time = time.time()

print('Time taken = {} sec'.format(end_time - start_time))

下面的例子显示了for循环和列表推导式在时间上的差异:

import time

# for loop vs. list comp
list_comp_start_time = time.time()
result = [i for i in range(0,1000000)]
list_comp_end_time = time.time()
print('Time taken for list comp = {} sec'.format(list_comp_end_time - list_comp_start_time))

result=[]
for_loop_start_time = time.time()
for i in range(0,1000000):
result.append(i)
for_loop_end_time = time.time()
print('Time taken for for-loop = {} sec'.format(for_loop_end_time - for_loop_start_time))

list_comp_time = list_comp_end_time - list_comp_start_time
for_loop_time = for_loop_end_time - for_loop_start_time
print('Difference = {} %'.format((for_loop_time - list_comp_time)/list_comp_time * 100))

我们都知道for会慢一些。

Time taken for list comp = 0.05843973159790039 sec
Time taken for for-loop = 0.06774497032165527 sec
Difference = 15.922795107582594 %

%%time 魔法命令

魔法命令是IPython内核中内置的方便命令,可以方便地执行特定的任务。一般情况下都实在jupyter notebook种使用。

在单元格的开头添加%%time ,单元格执行完成后,会输出单元格执行所花费的时间。

%%time
def convert_cms(cm, unit='m'):
'''
Function to convert cm to m or feet
'''
if unit == 'm':
return cm/100
return cm/30.48

convert_cms(1000)

结果如下:

CPU times: user 24 µs, sys: 1 µs, total: 25 µs
Wall time: 28.1 µs

Out[8]: 10.0

这里的CPU times是CPU处理代码所花费的实际时间,Wall time是事件经过的真实时间,在方法入口和方法出口之间的时间。

line_profiler

前两个方法只提供执行该方法所需的总时间。通过时间分析器我们可以获得函数中每一个代码的运行时间。

这里我们需要使用line_profiler包。使用pip install line_profiler。

import line_profiler

def convert_cms(cm, unit='m'):
'''
Function to convert cm to m or feet
'''
if unit == 'm':
return cm/100
return cm/30.48

# Load the profiler
%load_ext line_profiler

# Use the profiler's magic to call the method
%lprun -f convert_cms convert_cms(1000, 'f')

输出结果如下:

Timer unit: 1e-06 s

Total time: 4e-06 s
File: /var/folders/y_/ff7_m0c146ddrr_mctd4vpkh0000gn/T/ipykernel_22452/382784489.py
Function: convert_cms at line 1

Line # Hits Time Per Hit % Time Line Contents
==============================================================
1 def convert_cms(cm, unit='m'):
2 '''
3 Function to convert cm to m or feet
4 '''
5 1 2.0 2.0 50.0 if unit == 'm':
6 return cm/100
7 1 2.0 2.0 50.0 return cm/30.48

可以看到line_profiler提供了每行代码所花费时间的详细信息。

  • Line Contents :运行的代码
  • Hits:行被执行的次数
  • Time:所花费的总时间(即命中次数x每次命中次数)
  • Per Hit:一次执行花费的时间,也就是说 Time =  Hits X Per Hit
  • % Time:占总时间的比例

可以看到,每一行代码都详细的分析了时间,这对于我们分析时间相当的有帮助。

memory_profiler

与line_profiler类似,memory_profiler提供代码的逐行内存使用情况。

要安装它需要使用pip install memory_profiler。我们这里监视convert_cms_f函数的内存使用情况。

from conversions import convert_cms_f
import memory_profiler

%load_ext memory_profiler

%mprun -f convert_cms_f convert_cms_f(1000, 'f')

convert_cms_f函数在单独的文件中定义,然后导入。结果如下:

Line #   Mem usage   Increment Occurrences   Line Contents
=============================================================
1 63.7 MiB 63.7 MiB 1 def convert_cms_f(cm, unit='m'):
2 '''
3 Function to convert cm to m or feet
4 '''
5 63.7 MiB 0.0 MiB 1 if unit == 'm':
6 return cm/100
7 63.7 MiB 0.0 MiB 1 return cm/30.48

memory_profiler 提供对每行代码内存使用情况的详细了解。

这里的1 MiB (MebiByte) 几乎等于 1MB。1 MiB  = 1.048576 1MB

但是memory_profiler 也有一些缺点:它通过查询操作系统内存,所以结果可能与 python 解释器略有不同,如果在会话中多次运行 %mprun,可能会注意到增量列报告所有代码行为 0.0 MiB。这是因为魔法命令的限制导致的。

虽然memory_profiler有一些问题,但是它就使我们能够清楚地了解内存使用情况,对于开发来说是一个非常好用的工具。

总结

虽然Python并不是一个以执行效率见长的语言,但是在某些特殊情况下这些命令对我们还是非常有帮助的。


责任编辑:华轩 来源: DeepHub IMBA
相关推荐

2010-06-02 11:06:15

Linux 内存监控

2010-06-02 12:47:12

Linux 内存监控

2009-07-09 18:03:25

tomcatJVM内存

2017-01-18 21:57:14

2019-06-24 08:53:01

Bash脚本Linux系统运维

2010-02-03 17:16:58

Linux内存使用

2020-06-17 14:10:01

Python内存程序

2010-10-14 16:10:28

MySQL排序

2018-07-18 15:13:56

MCU代码时间

2009-06-30 14:11:00

Hibernate缓存

2020-02-04 13:50:09

Linux进程内存使用

2017-09-20 16:00:37

Chromebook

2023-08-21 14:18:48

操作系统Linux

2024-04-12 07:50:40

Python监控利器Time 模块

2017-11-30 18:42:22

PythonCPU脚本分析

2022-07-13 14:26:26

Linux

2010-09-26 12:45:29

2022-09-26 09:44:10

Linux

2020-12-07 14:20:35

Linux磁盘工具

2013-07-23 06:56:12

Android内存机制APP内存使用情况Android开发学习
点赞
收藏

51CTO技术栈公众号