数据分析项目的五个坑点,千万不要对号入座!

大数据 数据分析
所谓:猛将必发于卒伍,宰相必起于州郡。好的数据分析师,不是一上来就搬弄模型,而是能从数据细节里,读出企业的问题;能基于哪怕最简单的数据基础,设计出可行方法帮助业务从低端向高端升级。这才是好的数据分析师真正起到的作用。

​场景还原:

某互联网企业的B2B商务拓展团队,主要通过电话销售联系潜在客户,外呼名单管理混乱,只有客户企业名称、联系电话两个字段,销售成功率极低,且团队管理混乱,只记录成交金额,没有对未成交原因做记录,也没有跟进记录。业绩完成差,团队流失严重,领导很着急。

问题一(选择题)

你是这个企业的数据分析师,此时你会:

 A、在月报里认真分析成功率低原因,写20页整改建议

 B、月报只列数字,等着他们来找你谈合作

(题目简单,思考一秒钟)

经过上一篇的教育,大家都选B。是滴,这个场景里的问题根本是业务管理混乱导致的,数据能帮上忙就见鬼了。

如果业务自己意识不到痛,只是数据分析师作为外人blablabla,根本没人理。所以不要干这种出力不讨好的事。退一步讲,即使你干了,人家听了你的建议效率提高了,也是业务独揽大功,关你分析屁事,你怎么证明他们听了呢?人家会说:“我早想到了”“你不说我也知道”。

所以最好的策略是等他们来找,立项目,比如叫“销售业绩提升项目”成立项目组,发邮件告知老板们正式开工,Ok,走起!

问题二(判断题)

现在团队领导找到你,决定立项开干,你把项目目标定为“提升销售成功率”请问是对还是错?

A、对

B、错

(题目简单,思考一秒钟)

这是很多做分析的同学常范的问题:把终极目标当眼前目标。或者压根不知道业务目标是什么。只是凭感觉说:“我们是电商,所以要提GMV”“我们做增长,所以要做DAU”……

请注意:在管理混乱、数据缺失、团队跑路的情况下,指望写200行代码,出个ppt就能拉动业绩,是完全不现实的。所以要和业务领导认真谈谈,除了提升销售成功率外,还有没有二级目标可以做。

比如:

  • 论证改善结果需要时间,争取时间
  • 论证当前无力做改善,调低KPI
  • 探索稳定团队的做法,稳定军心
  • 找到一些成功标杆,总结经验

实际上,真遇到业绩不行,业务领导往往第一位想到的是要资源,第二位想到的是调KPI,第三位想到的是找案例。别人真没心思听你说:“活跃率低了,要!搞!高!”。因此,梳理目标,确定一级、二级目标,非常重要。所以这题选B。

问题三(选择题)

现在确认一级目标:提升销售成功率;二级目标:找成功销售经验。马上有人跳出来说:“你都没做过销售,你怎么分析!!!”问:怎么办?

A、通过数据分析出最佳销售方法

B、承认自己不懂

(题目简单,思考一秒钟)

这是很多做分析的同学常犯的问题*2:指望数据直接算出一个最佳方案。带着这种想法的同学往往会被人用:“你成交过几单?”“你行你上啊”打趴下。

在谈及“如何做”这个问题时,数据分析的作用不是算出最佳的方案。因为每一个成功的个案,一定有不可复制的独特优势,比如销售,有些人就是天生巧舌如簧,天生形象好让人喜欢,你不能回避这些。

数据分析的作用是:分析具体案例,区分可复制部分和不可复制部分。把可复制部分沉淀为经验,把不可复制的特征提取出来,以后找更多类似特征。

比如我们发现本地靓女做销售成交高,那就让每个城市在本地招聘高颜值闺女就好了;如果是某个特殊时间,特殊动作要做,那就让其他人复制这个操作。数据分析擅长的不是卖货,而是总结经验,寻找特征。这个题选B

问题四(看图说话)

一个月基本工资1300,每单提成250,以下两种分层哪种好用?

A、图1

B、图2

图片

(题目稍复杂,思考一分钟)

出这个题不是考如何分层,而是考一个基本思路:根据业务需求找分类标准。比如这个例子里,有个很大的问题是:团队流失严重。可能人均订单10单、8单、4单在统计上是有区分的,但在业务上毫无区分,一个业务员不管是10还是8,都挣不够一个月的生活费,他还是会跑路。但25单可以让他挣到25*250+1300=7550的收入,对电话小哥来说很可观了。

这是数据分析与数据挖掘的一个核心区别。我们建数据模型,为的是大概率模拟现实情况,所以可以处理掉一些数据,虚拟填充一批数据,反正为的是整体效果。

做数据分析,有独特效果:能指导业务部门创造现在不存在的情况。比如业务觉得,能月入7500的骨干至少占比20%,团队才稳定,那现有的薪酬制度、操作系统、招聘流程都能改,这就打破了现状。因此做数据分析,往往更看重对业务的指导意义,找标准,要找符合业务需求的标准。此题选B。

问题五(看图说话)

还是上图,如采用B图分层,是否可锁定第一层就是业务标杆,进行深入研究

A、能

B、不能

(题目稍复杂,思考一分钟)

答:不能。因为尚不知道这些人业绩好,是持续性好、还是偶尔好。如下图所示,有可能一个月内选出来的优胜者,有四种不同走势:

图片

注意:一般为了取数方便,我们不会一次捞所有数据。因此推进项目往往是从个案到普遍,从单月到整年,这样分步骤输出成果。一方面可以提高效率,不至于项目拖很久不见产出;另一方面,短期突发情况更容易被解读,想知道是不是真的找到规律,就得从短期推广到长期来看。

比如这个例子,我们可以从一个月表现里先选出准标杆,再看他们的稳定情况。从而解读出更丰富业务含义,建立下一步分析假设。有了分析假设,就可以继续深入,做更深的分析。

图片

这个题目,是陈老师做内训题目之一。原题可没这么多提示,就六个字段:

1、业务员ID

2、客户汉字名称

3、客户联系电话

4、是否成交

5、成交时间

6、成交金额

很多同学看完一脸懵逼:“卧槽这分析啥啊,啥都没有。”可他真真就是很多公司现状。挂个“互联网企业”的名号,实际管理比传统企业还落后。

从解题步骤来看,只要目标设定合理,一步步做,还是可以产生很多有用结论的。哪怕最后发现,销售就是很随机的,那对于业务也是很大支持,至少以后就可劲招人好了,搞人海战术。如果能总结出一套标杆话术,当然是更理想的结果了。

而且,也不是所有数据都不能获得。比如我们真的选出标杆,他的话术、联系客户时间,跟进次数就是可以记录和补充的。基于这些分析结果,我们可以进一步推动系统升级改造。有了更好的系统,业务既能提高效率,数据也能有更多分析素材,大家都有获益。

图片

既然提到数据采集,那么问题又来了,从哪里做起呢?

问题五(排序题)

经过第一阶段分析,业务认可复制标杆的做法,想进一步完善数据,那么下边数据数据都是需要系统支持的,优先级排序是:

A、用爬虫爬客户详细信息

B、把业务员简历录入系统

C、上CRM记录业务员操作

D、完善客户信息表让业务员填

(题目稍复杂,思考一分钟)

有多少程序员小哥是把A排在第一位的?请举手,哈哈。请注意,虽然ABCD选项都需要系统,但数据本身的获取难度、需要业务支持程度、有用性是不一样的:

简历:格式化程度最高,且不要经销售的手,被污染可能最低。

CRM数据:直接记录操作,不需要经销售的手。

信息表:需要经销售的手,得有配套管理措施。

爬虫:看似可做,可很难保证数据质量稳定性(特指本例,B2B商务数据可能很零散,不像电商销量、评论可以集中爬)。

因此从易到难,排序是B≥C≥D≥A。举这个例子,只是为了提示大家:不要因为我们是做技术的,就沉迷技术。很多技术工具需要配套制度,以保证数据不被污染。这时候要和业务通力合作,考虑技术的可用性,便捷性。有些小哥太沉迷搞数据,会把业务流程搞得巨复杂,数据表搞得太多字段,结果销售们随便应付,到头来坑的还是自己。

小结

这一篇,我们总结下做优秀数据分析项目五大坑点:

1、 没有立项,没有共识,只谈数据,没法落地

2、 直接拿最高目标当项目目标,无法完成

3、 生搬硬套模型,结果陷于数据不足动弹不得

4、 一次做的太复杂,迟迟出不了结果

5、 没有循序渐进迭代,成果至于一张ppt

想避免这些大坑,核心就是:拒绝闭门造车,结合业务需求,从低到高进化。在这个过程中,需要大量的需求洞察,沟通协作,这样才能让业务测试分析结果,最后去伪存真,推动业务进化。

这就是为啥网上“泰坦尼克”“波士顿房价”“美国某信用卡”“猫眼电影评论”一类的玩意不算项目的原因。这些所谓的网红项目,就是跑一张数据表而已。

况且很多自学者都不是自己跑这张数据表,代码都是抄网上现成的。除了打字能力(和读英文单词能力)以外,没有任何沟通、需求分析、方案制定、结果测试、迭代升级过程。虽然这些网红项目都会冠以“人工智能”“21天转行年薪百万”之类名字,但丫就是自娱自乐而已。

所谓:猛将必发于卒伍,宰相必起于州郡。好的数据分析师,不是一上来就搬弄模型,而是能从数据细节里,读出企业的问题;能基于哪怕最简单的数据基础,设计出可行方法帮助业务从低端向高端升级。这才是好的数据分析师真正起到的作用。

然而有些同学会说:老师,这个场景是业务有痛点,来找我们解决。可还有一个场景是:业务自己也不知道想要什么?然后问我们“你们要解读出来一些我们不知道,且很重要的东西”这时候模模糊糊、混混沌沌,我该怎么办?​

责任编辑:武晓燕 来源: 接地气的陈老师
相关推荐

2010-06-30 10:37:33

职业性格

2020-11-07 16:37:36

程序员技术工资

2010-07-07 09:10:58

Linux

2013-10-14 13:38:16

飞鱼星无线云飞鱼星路由器飞鱼星

2010-04-16 16:56:14

服务器租用数据融合数据中心

2024-04-17 08:54:08

高并发技术ES

2018-03-12 10:39:19

流量长途漫游互联网

2021-04-07 14:43:41

数据分析大数据工具

2023-05-05 11:42:21

2023-12-13 12:46:49

数据分析指标算法

2021-03-26 10:48:14

代码语言提交

2020-11-19 08:58:00

程序员数字强迫症

2013-07-04 13:21:51

2015-10-30 13:57:20

烹饪数据分析

2023-05-12 11:49:46

2013-12-10 09:50:03

技术技术博客

2019-09-18 20:39:07

数据科学自动化工具机器学习

2012-11-08 09:49:30

C++Java程序员

2019-07-10 15:46:05

大数据数据库信息安全

2022-08-05 11:29:06

数据分析考核政治
点赞
收藏

51CTO技术栈公众号