聊聊如何防止接口重复提交?

开发 前端
本次方案相比于上一个方案,最大的改进点在于:将接口请求唯一 ID 的生成逻辑,放在服务端通过规则组合来实现,不需要前端提交接口的时候强制带上这个参数,在满足防止接口重复提交的要求同时,又能减少前端和测试提交接口的复杂度!

​一、摘要

在上一篇文章中,我们详细的介绍了随着下单流量逐渐上升,为了降低数据库的访问压力,通过请求唯一ID+redis分布式锁来防止接口重复提交,流程图如下!

图片

每次提交的时候,需要先调用后端服务获取请求唯一ID,然后才能提交。

对于这样的流程,不少的同学可能会感觉到非常鸡肋,尤其是单元测试,需要每次先获取submitToken值,然后才能提交!

能不能不用这么麻烦,直接服务端通过一些规则组合,生成本次请求唯一ID呢?

答案是可以的!

今天我们就一起来看看,如何通过服务端来完成请求唯一 ID 的生成?

二、方案实践

我们先来看一张图,这张图就是本次方案的核心流程图。

图片

实现的逻辑,流程如下:

1.用户点击提交按钮,服务端接受到请求后,通过规则计算出本次请求唯一ID值

2.使用redis的分布式锁服务,对请求 ID 在限定的时间内尝试进行加锁,如果加锁成功,继续后续流程;如果加锁失败,说明服务正在处理,请勿重复提交

3.最后一步,如果加锁成功后,需要将锁手动释放掉,以免再次请求时,提示同样的信息

引入缓存服务后,防止重复提交的大体思路如上,实践代码如下!

2.1、引入 redis 组件

本次 demo 项目是基于SpringBoot​版本进行构建,添加相关的redis依赖环境如下:

<!-- 引入springboot -->
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.1.0.RELEASE</version>
</parent>

......

<!-- Redis相关依赖包,采用jedis作为客户端 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
<exclusions>
<exclusion>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
</exclusion>
<exclusion>
<artifactId>lettuce-core</artifactId>
<groupId>io.lettuce</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-pool2</artifactId>
</dependency>

2.2、添加 redis 环境配置

在全局配置application.properties​文件中,添加redis相关服务配置如下

# 项目名
spring.application.name=springboot-example-submit

# Redis数据库索引(默认为0)
spring.redis.database=1
# Redis服务器地址
spring.redis.host=127.0.0.1
# Redis服务器连接端口
spring.redis.port=6379
# Redis服务器连接密码(默认为空)
spring.redis.password=
# Redis服务器连接超时配置
spring.redis.timeout=1000

# 连接池配置
spring.redis.jedis.pool.max-active=8
spring.redis.jedis.pool.max-wait=1000
spring.redis.jedis.pool.max-idle=8
spring.redis.jedis.pool.min-idle=0
spring.redis.jedis.pool.time-between-eviction-runs=100

2.3、编写服务验证逻辑,通过 aop 代理方式实现

首先创建一个@SubmitLimit注解,通过这个注解来进行方法代理拦截!

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD})
@Documented
public @interface SubmitLimit {

/**
* 指定时间内不可重复提交(仅相对上一次发起请求时间差),单位毫秒
* @return
*/
int waitTime() default 1000;

/**
* 指定请求头部key,可以组合生成签名
* @return
*/
String[] customerHeaders() default {};


/**
* 自定义重复提交提示语
* @return
*/
String customerTipMsg() default "";
}

编写方法代理服务,增加防止重复提交的验证,实现了逻辑如下!

@Order(1)
@Aspect
@Component
public class SubmitLimitAspect {

private static final Logger LOGGER = LoggerFactory.getLogger(SubmitLimitAspect.class);

/**
* redis分割符
*/
private static final String REDIS_SEPARATOR = ":";

/**
* 默认锁对应的值
*/
private static final String DEFAULT_LOCK_VALUE = "DEFAULT_SUBMIT_LOCK_VALUE";

/**
* 默认重复提交提示语
*/
private static final String DEFAULT_TIP_MSG = "服务正在处理,请勿重复提交!";


@Value("${spring.application.name}")
private String applicationName;

@Autowired
private RedisLockService redisLockService;


/**
* 方法调用环绕拦截
*/
@Around(value = "@annotation(com.example.submittoken.config.annotation.SubmitLimit)")
public Object doAround(ProceedingJoinPoint joinPoint){
HttpServletRequest request = getHttpServletRequest();
if(Objects.isNull(request)){
return ResResult.getSysError("请求参数不能为空!");
}
//获取注解配置的参数
SubmitLimit submitLimit = getSubmitLimit(joinPoint);
//组合生成key,通过key实现加锁和解锁
String lockKey = buildSubmitLimitKey(joinPoint, request, submitLimit.customerHeaders());
//尝试在指定的时间内加锁
boolean lock = redisLockService.tryLock(lockKey, DEFAULT_LOCK_VALUE, Duration.ofMillis(submitLimit.waitTime()));
if(!lock){
String tipMsg = StringUtils.isEmpty(submitLimit.customerTipMsg()) ? DEFAULT_TIP_MSG : submitLimit.customerTipMsg();
return ResResult.getSysError(tipMsg);
}
try {
//继续执行后续流程
return execute(joinPoint);
} finally {
//执行完毕之后,手动将锁释放
redisLockService.releaseLock(lockKey, DEFAULT_LOCK_VALUE);
}
}

/**
* 执行任务
* @param joinPoint
* @return
*/
private Object execute(ProceedingJoinPoint joinPoint){
try {
return joinPoint.proceed();
} catch (CommonException e) {
return ResResult.getSysError(e.getMessage());
} catch (Throwable e) {
LOGGER.error("业务处理发生异常,错误信息:",e);
return ResResult.getSysError(ResResultEnum.DEFAULT_ERROR_MESSAGE);
}
}


/**
* 获取请求对象
* @return
*/
private HttpServletRequest getHttpServletRequest(){
RequestAttributes ra = RequestContextHolder.getRequestAttributes();
ServletRequestAttributes sra = (ServletRequestAttributes)ra;
HttpServletRequest request = sra.getRequest();
return request;
}

/**
* 获取注解值
* @param joinPoint
* @return
*/
private SubmitLimit getSubmitLimit(JoinPoint joinPoint){
MethodSignature methodSignature = (MethodSignature) joinPoint.getSignature();
Method method = methodSignature.getMethod();
SubmitLimit submitLimit = method.getAnnotation(SubmitLimit.class);
return submitLimit;
}

/**
* 组合生成lockKey
* 生成规则:项目名+接口名+方法名+请求参数签名(对请求头部参数+请求body参数,取SHA1值)
* @param joinPoint
* @param request
* @param customerHeaders
* @return
*/
private String buildSubmitLimitKey(JoinPoint joinPoint, HttpServletRequest request, String[] customerHeaders){
//请求参数=请求头部+请求body
String requestHeader = getRequestHeader(request, customerHeaders);
String requestBody = getRequestBody(joinPoint.getArgs());
String requestParamSign = DigestUtils.sha1Hex(requestHeader + requestBody);
String submitLimitKey = new StringBuilder()
.append(applicationName)
.append(REDIS_SEPARATOR)
.append(joinPoint.getSignature().getDeclaringType().getSimpleName())
.append(REDIS_SEPARATOR)
.append(joinPoint.getSignature().getName())
.append(REDIS_SEPARATOR)
.append(requestParamSign)
.toString();
return submitLimitKey;
}


/**
* 获取指定请求头部参数
* @param request
* @param customerHeaders
* @return
*/
private String getRequestHeader(HttpServletRequest request, String[] customerHeaders){
if (Objects.isNull(customerHeaders)) {
return "";
}
StringBuilder sb = new StringBuilder();
for (String headerKey : customerHeaders) {
sb.append(request.getHeader(headerKey));
}
return sb.toString();
}


/**
* 获取请求body参数
* @param args
* @return
*/
private String getRequestBody(Object[] args){
if (Objects.isNull(args)) {
return "";
}
StringBuilder sb = new StringBuilder();
for (Object arg : args) {
if (arg instanceof HttpServletRequest
|| arg instanceof HttpServletResponse
|| arg instanceof MultipartFile
|| arg instanceof BindResult
|| arg instanceof MultipartFile[]
|| arg instanceof ModelMap
|| arg instanceof Model
|| arg instanceof ExtendedServletRequestDataBinder
|| arg instanceof byte[]) {
continue;
}
sb.append(JacksonUtils.toJson(arg));
}
return sb.toString();
}
}

部分校验逻辑用到了redis分布式锁,具体实现逻辑如下:

/**
* redis分布式锁服务类
* 采用LUA脚本实现,保证加锁、解锁操作原子性
*
*/
@Component
public class RedisLockService {

/**
* 分布式锁过期时间,单位秒
*/
private static final Long DEFAULT_LOCK_EXPIRE_TIME = 60L;

@Autowired
private StringRedisTemplate stringRedisTemplate;

/**
* 尝试在指定时间内加锁
* @param key
* @param value
* @param timeout 锁等待时间
* @return
*/
public boolean tryLock(String key,String value, Duration timeout){
long waitMills = timeout.toMillis();
long currentTimeMillis = System.currentTimeMillis();
do {
boolean lock = lock(key, value, DEFAULT_LOCK_EXPIRE_TIME);
if (lock) {
return true;
}
try {
Thread.sleep(1L);
} catch (InterruptedException e) {
Thread.interrupted();
}
} while (System.currentTimeMillis() < currentTimeMillis + waitMills);
return false;
}

/**
* 直接加锁
* @param key
* @param value
* @param expire
* @return
*/
public boolean lock(String key,String value, Long expire){
String luaScript = "if redis.call('setnx', KEYS[1], ARGV[1]) == 1 then return redis.call('expire', KEYS[1], ARGV[2]) else return 0 end";
RedisScript<Long> redisScript = new DefaultRedisScript<>(luaScript, Long.class);
Long result = stringRedisTemplate.execute(redisScript, Collections.singletonList(key), value, String.valueOf(expire));
return result.equals(Long.valueOf(1));
}


/**
* 释放锁
* @param key
* @param value
* @return
*/
public boolean releaseLock(String key,String value){
String luaScript = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
RedisScript<Long> redisScript = new DefaultRedisScript<>(luaScript, Long.class);
Long result = stringRedisTemplate.execute(redisScript, Collections.singletonList(key),value);
return result.equals(Long.valueOf(1));
}
}

部分代码使用到了序列化相关类JacksonUtils,源码如下:

public class JacksonUtils {

private static final Logger LOGGER = LoggerFactory.getLogger(JacksonUtils.class);


private static final ObjectMapper objectMapper = new ObjectMapper();

static {
// 对象的所有字段全部列入
objectMapper.setSerializationInclusion(JsonInclude.Include.ALWAYS);
// 忽略未知的字段
objectMapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false);
// 读取不认识的枚举时,当null值处理
objectMapper.configure(DeserializationFeature.READ_UNKNOWN_ENUM_VALUES_AS_NULL, true);
// 序列化忽略未知属性
objectMapper.configure(SerializationFeature.FAIL_ON_EMPTY_BEANS, false);
//忽略字段大小写
objectMapper.configure(MapperFeature.ACCEPT_CASE_INSENSITIVE_PROPERTIES, true);

objectMapper.configure(JsonParser.Feature.AUTO_CLOSE_SOURCE, true);
SimpleModule module = new SimpleModule();
module.addSerializer(Long.class, ToStringSerializer.instance);
module.addSerializer(Long.TYPE, ToStringSerializer.instance);
objectMapper.registerModule(module);
}

public static String toJson(Object object){
if (object == null) {
return null;
}
try {
return objectMapper.writeValueAsString(object);
} catch (Exception e) {
LOGGER.error("序列化失败",e);
}
return null;
}

public static <T> T fromJson(String json, Class<T> classOfT){
if (json == null) {
return null;
}
try {
return objectMapper.readValue(json, classOfT);
} catch (Exception e) {
LOGGER.error("反序列化失败",e);
}
return null;
}

public static <T> T fromJson(String json, Type typeOfT){
if (json == null) {
return null;
}
try {
return objectMapper.readValue(json, objectMapper.constructType(typeOfT));
} catch (Exception e) {
LOGGER.error("反序列化失败",e);
}
return null;
}
}

2.4、在相关的业务接口上,增加SubmitLimit注解即可

@RestController
@RequestMapping("order")
public class OrderController {

@Autowired
private OrderService orderService;

/**
* 下单,指定请求头部参与请求唯一值计算
* @param request
* @return
*/
@SubmitLimit(customerHeaders = {"appId", "token"}, customerTipMsg = "正在加紧为您处理,请勿重复下单!")
@PostMapping(value = "confirm")
public ResResult confirmOrder(@RequestBody OrderConfirmRequest request){
//调用订单下单相关逻辑
orderService.confirm(request);
return ResResult.getSuccess();
}
}

其中最关键的一个步就是将唯一请求 ID  的生成,放在服务端通过组合来实现,在保证防止接口重复提交的效果同时,也可以显著的降低接口测试复杂度!

三、小结

本次方案相比于上一个方案,最大的改进点在于:将接口请求唯一 ID 的生成逻辑,放在服务端通过规则组合来实现,不需要前端提交接口的时候强制带上这个参数,在满足防止接口重复提交的要求同时,又能减少前端和测试提交接口的复杂度!

需要特别注意的是:使用redis​的分布式锁,推荐单机环境,如果redis是集群环境,可能会导致锁短暂无效!

责任编辑:武晓燕 来源: Java极客技术
相关推荐

2022-11-11 07:34:43

2022-11-15 07:39:48

2024-06-06 08:46:37

2023-06-05 08:22:20

2022-06-10 13:03:44

接口重试while

2013-11-13 11:01:14

表单表单重复提交表单策略

2013-11-13 14:39:53

表单提交开发

2024-06-21 09:19:45

代码接口重复请求开发

2020-07-17 07:59:55

数据

2023-11-06 08:00:38

接口高可用机制

2021-04-06 06:01:11

AxiosWeb 项目开发

2010-11-23 16:56:04

mysql表单

2022-05-25 09:55:40

数据重复提交Java

2024-08-05 09:29:00

前端接口请求

2024-05-28 09:26:46

2009-06-05 10:37:52

struts2 国际化表单

2009-08-24 10:47:45

C#接口重实现

2024-02-19 00:00:00

接口图形验证码

2024-09-02 11:05:49

2024-12-16 00:54:05

点赞
收藏

51CTO技术栈公众号