数学神器!Sympy 模块解数学方程解微积分

开发 前端
如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

SymPy 是一个Python库,专注于符号数学,它的目标是成为一个全功能的计算机代数系统,同时保持代码简洁、易于理解和扩展。

举一个简单的例子,比如说展开二次方程:

from sympy import *
x = Symbol('x')
y = Symbol('y')
d = ((x+y)**2).expand()
print(d)
# 结果:x**2 + 2*x*y + y**2

你可以随便输入表达式,即便是十次方,它都能轻易的展开,非常方便:

from sympy import *
x = Symbol('x')
y = Symbol('y')
d = ((x+y)**10).expand()
print(d)
# 结果:x**10 + 10*x**9*y + 45*x**8*y**2 + 120*x**7*y**3 + 210*x**6*y**4 + 252*x**5*y**5 + 210*x**4*y**6 + 120*x**3*y**7 + 45*x**2*y**8 + 10*x*y**9 + y**10

下面就来讲讲这个模块的具体使用方法和例子。

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,可以访问这篇文章:超详细Python安装指南 进行安装。

(可选1) 如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda,它内置了Python和pip.

(可选2) 此外,推荐大家用VSCode编辑器,它有许多的优点:Python 编程的最好搭档—VSCode 详细指南。

请选择以下任一种方式输入命令安装依赖:1. Windows 环境 打开 Cmd (开始-运行-CMD)。2. MacOS 环境 打开 Terminal (command+空格输入Terminal)。3. 如果你用的是 VSCode编辑器 或 Pycharm,可以直接使用界面下方的Terminal.

pip install Sympy

2.基本使用

简化表达式(化简)

sympy支持三种化简方式,分别是普通化简、三角化简、指数化简。

普通化简 simplify( ):

from sympy import *
x = Symbol('x')
d = simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
print(d)
# 结果:x - 1

三角化简 trigsimp( ):

from sympy import *
x = Symbol('x')
d = trigsimp(sin(x)/cos(x))
print(d)
# 结果:tan(x)

指数化简 powsimp( ):

from sympy import *
x = Symbol('x')
a = Symbol('a')
b = Symbol('b')
d = powsimp(x**a*x**b)
print(d)
# 结果:x**(a + b)

解方程 solve()

第一个参数为要解的方程,要求右端等于0,第二个参数为要解的未知数。

如一元一次方程:

from sympy import *
x = Symbol('x')
d = solve(x * 3 - 6, x)
print(d)
# 结果:[2]

二元一次方程:

from sympy import *
x = Symbol('x')
y = Symbol('y')
d = solve([2 * x - y - 3, 3 * x + y - 7],[x, y])
print(d)
# 结果:{x: 2, y: 1}

求极限 limit()

dir=’+’表示求解右极限,dir=’-‘表示求解左极限:

from sympy import *
x = Symbol('x')
d = limit(1/x,x,oo,dir='+')
print(d)
# 结果:0
d = limit(1/x,x,oo,dir='-')
print(d)
# 结果:0

求积分 integrate( )

先试试求解不定积分:

from sympy import *
x = Symbol('x')
d = integrate(sin(x),x)
print(d)
# 结果:-cos(x)

再试试定积分:

from sympy import *
x = Symbol('x')
d = integrate(sin(x),(x,0,pi/2))
print(d)
# 结果:1

求导 diff()

使用 diff 函数可以对方程进行求导:

from sympy import *
x = Symbol('x')
d = diff(x**3,x)
print(d)
# 结果:3*x**2

d = diff(x**3,x,2)
print(d)
# 结果:6*x

解微分方程 dsolve( )

以 y′=2xy 为例:

from sympy import *
x = Symbol('x')
f = Function('f')
d = dsolve(diff(f(x),x) - 2*f(x)*x,f(x))
print(d)
# 结果:Eq(f(x), C1*exp(x**2))

3.实战一下

今天群里有同学问了这个问题,“大佬们,我想问问,如果这个积分用Python应该怎么写呢,谢谢大家”:

图片

# Python 实用宝典
from sympy import *
x = Symbol('x')
y = Symbol('y')
d = integrate(x-y, (y, 0, 1))
print(d)
# 结果:x - 1/2

为了计算这个结果,integrate的第一个参数是公式,第二个参数是积分变量及积分范围下标和上标。

运行后得到的结果便是 x - 1/2 与预期一致。

如果大家也有求解微积分、复杂方程的需要,可以试试sympy,它几乎是完美的存在。

责任编辑:武晓燕 来源: Python实用宝典
相关推荐

2022-06-20 08:00:11

代码Python命令

2024-05-24 11:38:17

SymPy计算运算

2024-06-05 11:36:28

2024-07-05 10:45:09

2024-07-31 15:11:57

SymPypython数学运算

2023-11-30 15:36:36

SympyPython

2020-04-01 15:04:54

代码数学符号程序

2020-06-17 08:54:09

数据科学机器学习数学

2015-08-05 10:15:12

数学编程

2021-09-05 15:28:05

自动驾驶伦理学道德规范

2020-01-18 20:04:06

数学Windows 10计算器

2010-10-25 17:33:35

Oracle数学函数

2011-08-04 16:58:12

惠普数学实验室

2017-04-05 20:29:57

AI数学符号算法

2019-04-08 08:25:48

代码开发工具

2023-08-30 13:09:12

AI模型

2022-01-15 23:04:03

人工智能高等数学技术

2014-05-04 10:53:59

台阶步数算法分析

2018-12-10 14:59:20

代码卷积模块架构

2023-12-06 13:44:00

模型训练
点赞
收藏

51CTO技术栈公众号