细粒度图像识别 [1] 是视觉感知学习的重要研究课题,在智能新经济和工业互联网等方面具有巨大应用价值,且在诸多现实场景已有广泛应用…… 鉴于当前领域内尚缺乏该方面的深度学习开源工具库,南京理工大学魏秀参教授团队用时近一年时间,开发、打磨、完成了 Hawkeye——细粒度图像识别深度学习开源工具库,供相关领域研究人员和工程师参考使用。本文是对 Hawkeye 的详细介绍。
1.什么是 Hawkeye 库
Hawkeye 是一个基于 PyTorch 的细粒度图像识别深度学习工具库,专为相关领域研究人员和工程师设计。目前,Hawkeye 包含多种代表性范式的细粒度识别方法,包括 “基于深度滤波器”、“基于注意力机制”、“基于高阶特征交互”、“基于特殊损失函数”、“基于网络数据” 以及其他方法。
Hawkeye 项目代码风格良好,结构清晰易读,可拓展性较强。对于刚接触细粒度图像识别领域的相关人员而言,Hawkeye 较易上手,便于其理解细粒度图像识别的主要流程和代表性方法,同时也方便在本工具库上快速实现自己的算法。此外,我们还给出了库中各模型的训练示例代码,自研方法也可按照示例快速适配并添加至 Hawkeye 中。
Hawkeye 开源库链接:https://github.com/Hawkeye-FineGrained/Hawkeye
2.Hawkeye 支持的模型及方法
Hawkeye 目前支持细粒度图像识别中主要学习范式的共 16 个模型与方法,具体如下:
基于深度滤波器
- S3N (ICCV 2019)
- Interp-Parts (CVPR 2020)
- ProtoTree (CVPR 2021)
基于注意力机制
- OSME+MAMC (ECCV 2018)
- MGE-CNN (ICCV 2019)
- APCNN (IEEE TIP 2021)
基于高阶特征交互
- BCNN (ICCV 2015)
- CBCNN (CVPR 2016)
- Fast MPN-COV (CVPR 2018)
基于特殊损失函数
- Pairwise Confusion (ECCV 2018)
- API-Net (AAAI 2020)
- CIN (AAAI 2020)
基于网络数据
Peer-Learning (ICCV 2021)
其他方法
NTS-Net (ECCV 2018)
CrossX (ICCV 2019)
DCL (CVPR 2019)
3.安装 Hawkeye
安装依赖
使用 conda 或者 pip 安装相关依赖:
- Python 3.8
- PyTorch 1.11.0 or higher
- torchvison 0.12.0 or higher
- numpy
- yacs
- tqdm
克隆仓库:
git clone https://github.com/Hawkeye-FineGrained/Hawkeye.git cd Hawkeye
准备数据集
我们提供了 8 个常用的细粒度识别数据集及最新的下载链接:
- CUB200: https://data.caltech.edu/records/65de6-vp158/files/CUB_200_2011.tgz
- Stanford Dog: http://vision.stanford.edu/aditya86/ImageNetDogs/images.tar
- Stanford Car: http://ai.stanford.edu/~jkrause/car196/car_ims.tgz
- FGVC Aircraft: https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/archives/fgvc-aircraft-2013b.tar.gz
- iNat2018: https://ml-inat-competition-datasets.s3.amazonaws.com/2018/train_val2018.tar.gz
- WebFG-bird: https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-bird.tar.gz
- WebFG-car: https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-car.tar.gz
- WebFG-aircraft: https://web-fgvc-496-5089-sh.oss-cn-shanghai.aliyuncs.com/web-aircraft.tar.gz
首先,下载一个数据集(以 CUB200 为例):
我们提供了上述 8 个数据集的 meta-data 文件,能够匹配库中的 FGDataset 方便地加载训练集和测试集,训练集和测试集为各个数据集官方提供的划分。使用不同数据集时,只需在实验的 config 文件中修改 dataset 配置即可,方便切换。
在实验的 config 文件中修改 dataset 配置,示例如下:
4.使用 Hawkeye 训练模型
对于 Hawkeye 支持的每个方法,我们均提供了单独的训练模板和配置文件。例如训练 APINet 只需一条命令:
实验的参数都在相应的 yaml 文件中,可读性高、便于修改,如:
实验的主程序 Examples/APINet.py 中的训练器 APINetTrainer 继承自 Trainer,不需要再写复杂的训练流程、logger、模型保存、配置加载等代码,只用按需修改部分模块即可。我们也提供了训练阶段的多个 hook 钩子,可以满足一些方法特别的实现方式。
日志文件、模型权重文件、训练使用的训练代码以及当时的配置文件都会保存在实验输出目录 log_dir 中,备份配置和训练代码便于日后对不同实验进行对比。
更多详细示例可参考项目链接中的具体信息:https://github.com/Hawkeye-FineGrained/Hawkeye